Visualization technology can be used to graphically illustrate various concepts in computer science. We argue that such technology, no matter how well it is designed, is of little educational value unless it engages learners in an active learning activity. Drawing on a review of experimental studies of visualization effectiveness, we motivate this position against the backdrop of current attitudes and best practices with respect to visualization use. We suggest a new taxonomy of learner engagement with visualization technology. Grounded in Bloom's wellrecognized taxonomy of understanding, we suggest metrics for assessing the learning outcomes to which such engagement may lead. Based on these taxonomies of engagement and effectiveness metrics, we present a framework for experimental studies of visualization effectiveness. Interested computer science educators are invited to collaborate with us by carrying out studies within this framework.
In computer science, an expected outcome of a student's education is programming skill. This working group investigated the programming competency students have as they complete their first one or two courses in computer science. In order to explore options for assessing students, the working group developed a trial assessment of whether students can program. The underlying goal of this work was to initiate dialog in the Computer Science community on how to develop these types of assessments. Several universities participated in our trial assessment and the disappointing results suggest that many students do not know how to program at the conclusion of their introductory courses. For a combined sample of 216 students from four universities, the average score was 22.89 out of 110 points on the general evaluation criteria developed for this study. From this trial assessment we developed a framework of expectations for first-year courses and suggestions for further work to develop more comprehensive assessments.
Visualization technology can be used to graphically illustrate various concepts in computer science. We argue that such technology, no matter how well it is designed, is of little educational value unless it engages learners in an active learning activity. Drawing on a review of experimental studies of visualization effectiveness, we motivate this position against the backdrop of current attitudes and best practices with respect to visualization use. We suggest a new taxonomy of learner engagement with visualization technology. Grounded in Bloom's wellrecognized taxonomy of understanding, we suggest metrics for assessing the learning outcomes to which such engagement may lead. Based on these taxonomies of engagement and effectiveness metrics, we present a framework for experimental studies of visualization effectiveness. Interested computer science educators are invited to collaborate with us by carrying out studies within this framework.
In computer science, an expected outcome of a student's education is programming skill. This working group investigated the programming competency students have as they complete their first one or two courses in computer science. In order to explore options for assessing students, the working group developed a trial assessment of whether students can program. The underlying goal of this work was to initiate dialog in the Computer Science community on how to develop these types of assessments. Several universities participated in our trial assessment and the disappointing results suggest that many students do not know how to program at the conclusion of their introductory courses. For a combined sample of 216 students from four universities, the average score was 22.89 out of 110 points on the general evaluation criteria developed for this study. From this trial assessment we developed a framework of expectations for first-year courses and suggestions for further work to develop more comprehensive assessments.
In computer science, an expected outcome of a student's education is programming skill. This working group investigated the programming competency students have as they complete their first one or two courses in computer science. In order to explore options for assessing students, the working group developed a trial assessment of whether students can program. The underlying goal of this work was to initiate dialog in the Computer Science community on how to develop these types of assessments. Several universities participated in our trial assessment and the disappointing results suggest that many students do not know how to program at the conclusion of their introductory courses. For a combined sample of 216 students from four universities, the average score was 22.89 out of 110 points on the general evaluation criteria developed for this study. From this trial assessment we developed a framework of expectations for first-year courses and suggestions for further work to develop more comprehensive assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.