Unique among known human herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV or HHV-8) encodes chemokine-like proteins (vMIP-I and vMIP-II). vMIP-II was shown to block infection of human immunodeficiency virus-type 1 (HIV-1) on a CD4-positive cell line expressing CCR3 and to a lesser extent on one expressing CCR5, whereas both vMIP-I and vMIP-II partially inhibited HIV infection of peripheral blood mononuclear cells. Like eotaxin, vMIP-II activated and chemoattracted human eosinophils by way of CCR3. vMIP-I and vMIP-II, but not cellular MIP-1alpha or RANTES, were highly angiogenic in the chorioallantoic assay, suggesting a possible pathogenic role in Kaposi's sarcoma.
CCR5 and CXCR4 are the two major coreceptors that have been identified for human immunodeficiency virus (HIV) entry. We have modified several beta-galactosidase-based HIV indicator cell lines to express CCR5 and/or CXCR4. Using these new reagents, we have been able to detect all primary isolates tested using one or both of these cell lines. However, there is large variation in the absolute viral infectivity among primary strains. Furthermore, all HIV strains are capable of causing syncytia in the indicator cells when the coreceptor is present regardless of whether they had previously been characterized as "syncytia-inducing" or "non-syncytium-inducing."
Complementary DNA (cDNA) clones encoding human macrophage-specific specific colony-stimulating factor (CSF-1) were isolated. One cDNA clone codes for a mature polypeptide of 224 amino acids and a putative leader of 32 amino acids. This cDNA, which was cloned in the Okayama-Berg expression vector, specifies the synthesis of biologically active CSF-1 in COS cells, as determined by a specific radioreceptor assay, macrophage bone marrow colony formation, and antibody neutralization. Most of the cDNA isolates contain part of an intron sequence that changes the reading frame, resulting in an abrupt termination of translation; these cDNA's were inactive in COS cells. The CSF-1 appears to be encoded by a single-copy gene, but its expression results in the synthesis of several messenger RNA species, ranging in size from about 1.5 to 4.5 kilobases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.