Generalized Vector Space Models (GVSM) extend the standard Vector Space Model (VSM) by embedding additional types of information, besides terms, in the representation of documents. An interesting type of information that can be used in such models is semantic information from word thesauri like WordNet. Previous attempts to construct GVSM reported contradicting results. The most challenging problem is to incorporate the semantic information in a theoretically sound and rigorous manner and to modify the standard interpretation of the VSM. In this paper we present a new GVSM model that exploits WordNet's semantic information. The model is based on a new measure of semantic relatedness between terms. Experimental study conducted in three TREC collections reveals that semantic information can boost text retrieval performance with the use of the proposed GVSM.
Abstract. We present an integer linear programming model of word sense disambiguation. Given a sentence, an inventory of possible senses per word, and a sense relatedness measure, the model assigns to the sentences's word occurrences the senses that maximize the total pairwise sense relatedness. Experimental results show that our model, with two unsupervised sense relatedness measures, compares well against two other prominent unsupervised word sense disambiguation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.