Adolescent idiopathic scoliosis (AIS) is a three-dimensional spinal deformity. Brace treatment is a common non-surgical treatment, intended to prevent progression (worsening) of the condition during adolescence. Estimating a braced patient's risk of progression is an essential part of planning treatment, so method for predicting this risk would be a useful decision support tool for practitioners. This work attempts to discover whether failure of brace treatment (progression) can be predicted at the start of treatment. Records were obtained for 62 AIS patients who had completed brace treatment. Subjects were labeled as "progressive" if their condition had progressed despite brace treatment and "non-progressive" otherwise. Wrapper-based feature selection selected two useful predictor variables from a list of 14 clinical measurements taken from the records. A logistic regression model was trained to classify patients as "progressive" or "non-progressive" using these two variables. The logistic regression model's simplicity and interpretability should facilitate its clinical acceptance. The model was tested on data from an additional 28 patients and found to be 75 % accurate. This accuracy is sufficient to make the predictions clinically useful. It can be used online: http://www.ece.ualberta.ca/~dchalmer/SimpleBracePredictor.html .
A depth image provides partial geometric information of a 3D scene, namely the shapes of physical objects as observed from a particular viewpoint. This information is important when synthesizing images of different virtual camera viewpoints via depth-image-based rendering (DIBR). It has been shown that depth images can be efficiently coded using contour-adaptive codecs that preserve edge sharpness, resulting in visually pleasing DIBR-synthesized images. However, contours are typically losslessly coded as side information (SI), which is expensive if the object shapes are complex. In this paper, we pursue a new paradigm in depth image coding for color-plus-depth representation of a 3D scene: we pro-actively simplify object shapes in a depth and color image pair to reduce depth coding cost, at a penalty of a slight increase in synthesized view distortion. Specifically, we first mathematically derive a distortion upper-bound proxy for 3DSwIM-a quality metric tailored for DIBR-synthesized images. This proxy reduces inter-dependency among pixel rows in a block to ease optimization. We then approximate object contours via a dynamic programming (DP) algorithm to optimally trade off coding cost of contours using arithmetic edge coding (AEC) with our proposed view synthesis distortion proxy. We modify the depth and color images according to the approximated object contours in an interview consistent manner. These are then coded respectively using a contour-adaptive image codec based on graph Fourier transform (GFT) for edge preservation and HEVC intra. Experimental results show that by maintaining sharp but simplified object contours during contour-adaptive coding, for the same visual quality of DIBR-synthesized virtual views, our proposal can reduce depth image coding rate by up to 22% compared to alternative coding strategies such as HEVC intra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.