This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite‐difference and finite‐element models. We demonstrate how a two‐dimensional analytic element model was used to identify errors in a complex three‐dimensional finite‐difference model caused by incorrect specification of boundary conditions. An improved finite‐difference model was developed using boundary conditions developed from a far‐field analytic element model. Calibration of a revised finite‐difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite‐difference model. Calibration statistics were also improved in that simulated base‐flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far‐field problem with an analytic element model.
Performance of this computer program has been tested and verified for several test cases; however, future applications of the program could reveal errors that were not detected in the test cases. Users are requested to notify the U.S. Geological Survey (USGS) if errors are found in the documentation report or in the computer program.
A new multilayer approach is presented for the modeling of ground water flow to radial collector wells. The approach allows for the inclusion of all aspects of the unique boundary condition along the lateral arms of a collector well, including skin effect and internal friction losses due to flow in the arms. The hydraulic conductivity may differ between horizontal layers within the aquifer, and vertical anisotropy can be taken into account. The approach is based on the multilayer analytic element method, such that regional flow and local three-dimensional detail may be simulated simultaneously and accurately within one regional model. Horizontal flow inside a layer is computed analytically, while vertical flow is approximated with a standard finite-difference scheme. Results obtained with the proposed approach compare well to results obtained with three-dimensional analytic element solutions for flow in unconfined aquifers. The presented approach may be applied to predict the yield of a collector well in a regional setting and to compute the origin and residence time, and thus the quality, of water pumped by the collector well. As an example, the addition of three lateral arms to a collector well that already has three laterals is investigated. The new arms are added at an elevation of 2 m above the existing laterals. The yield increase of the collector well is computed as a function of the lengths of the three new arms.
The U.S. Geological Survey's Soil-Water-Balance (SWB) code was developed as a tool to estimate distribution and timing of net infiltration out of the root zone by means of an approach that uses readily available data and minimizes user effort required to begin a SWB application. SWB calculates other components of the water balance, including soil moisture, reference and actual evapotranspiration, snowfall, snowmelt, canopy interception, and crop-water demand. SWB is based on a modified Thornthwaite-Mather soil-waterbalance approach, with components of the soil-water balance calculated at a daily time step. Net-infiltration calculations are computed by means of a rectangular grid of computational elements, which allows the calculated infiltration rates to be imported into grid-based regional groundwater-flow models. SWB makes use of gridded datasets, including datasets describing hydrologic soil groups, moisture-retaining capacity, flow direction, and land use. Climate data may be supplied in gridded or tabular form. The SWB 2.0 code described in this report extends capabilities of the original SWB version 1.0 model by adding new options for representing physical processes and additional data input and output capabilities. New methods included in SWB 2.0 allow for direct gridded input of externally calculated water-budget components (fog, septic, and storm-sewer leakage), simulation of canopy interception by several alternative processes, and a crop-water demand method for estimating irrigation amounts. New input and output capabilities allow for grids with differing spatial extents and projections to be combined without requiring the user to resample and resize the grids before use.
The availability of powerful desktop computers and graphical user interfaces for ground water flow models makes possible the construction of ever more complex models. A proposed copper-zinc sulfide mine in northern Wisconsin offers a unique case in which the same hydrologic system has been modeled using a variety of techniques covering a wide range of sophistication and complexity. Early in the permitting process, simple numerical models were used to evaluate the necessary amount of water to be pumped from the mine, reductions in streamflow, and the drawdowns in the regional aquifer. More complex models have subsequently been used in an attempt to refine the predictions. Even after so much modeling effort, questions regarding the accuracy and reliability of the predictions remain. We have performed a new analysis of the proposed mine using the two-dimensional analytic element code GFLOW coupled with the nonlinear parameter estimation code UCODE. The new model is parsimonious, containing fewer than 10 parameters, and covers a region several times larger in areal extent than any of the previous models. The model demonstrates the suitability of analytic element codes for use with parameter estimation codes. The simplified model results are similar to the more complex models; predicted mine inflows and UCODE-derived 95% confidence intervals are consistent with the previous predictions. More important, the large areal extent of the model allowed us to examine hydrological features not included in the previous models, resulting in new insights about the effects that far-field boundary conditions can have on near-field model calibration and parameterization. In this case, the addition of surface water runoff into a lake in the headwaters of a stream while holding recharge constant moved a regional ground watershed divide and resulted in some of the added water being captured by the adjoining basin. Finally, a simple analytical solution was used to clarify the GFLOW model's prediction that, for a model that is properly calibrated for heads, regional drawdowns are relatively unaffected by the choice of aquifer properties, but that mine inflows are strongly affected. Paradoxically, by reducing model complexity, we have increased the understanding gained from the modeling effort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.