For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS.For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprodTo order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.Suggested citation: Hunt, R.J., Walker, J.F., Selbig, W.R., Westenbroek, S.M., and Regan, R.S., 2013, Simulation of climate-change effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Water- The terms "altitude" and "elevation," as used in this report, refer to distance above the vertical datum. Simulation of Climate-Change Effects on AbstractAlthough groundwater and surface water are considered a single resource, historically hydrologic simulations have not accounted for feedback loops between the groundwater system and other hydrologic processes. These feedbacks include timing and rates of evapotranspiration, surface runoff, soil-zone flow, and interactions with the groundwater system. Simulations that iteratively couple the surface-water and groundwater systems, however, are characterized by long run times and calibration challenges. In this study, calibrated, uncoupled transient surface-water and steady-state groundwater models were used to construct one coupled transient groundwater/surface-water model for the Trout Lake Watershed in north-central Wisconsin, USA. The computer code GSFLOW (Groundwater/Surface-water FLOW) was used to simulate the coupled hydrologic system; a surface-water model represented hydrologic processes in the atmosphere, at land surface, and within the soil-zone, and a groundwater-flow model represented the unsaturated zone, saturated zone, stream, and lake budgets. The coupled GSFLOW model was calibrated by using heads, streamflows, lake levels, actual evapotranspiration rates, solar radiation, and snowpack measurements collected during water years 1998-2007; calibration was performed by using advanced features present in the PEST parameter estimation software suite.Simulated streamflows from the calibrated GSFLOW model and other basin characteristics were used as input to the one-dimensional SNTEMP (Stream-Network TEMPerature) model to simulate daily stream temperature in selected tributaries in the watershed. The temperature model was calibrated to high-resolution stream temperature time-series data measured in 2002. The calibrated GSFLOW and SNTEMP models were then used to simulate effects of potential climate change for the period extending to the year 2100. An ensemble of climate mod...
Potential Groundwater Recharge for the State of Minnesota Using the Soil-Water-Balance Model, 1996 -2010 group combinations for a particular region had a large effect on the resulting potential recharge value. During 1996-2010, April had the greatest monthly mean potential recharge compared to all other months, accounting for a mean of 30 percent of annual potential recharge in this single month.
Graphs showing sensitivity of average annual recharge and irrigation pumpage simulated by the SOil-WATer-Balance (SOWAT) model to changes in (A) irrigation efficiencies, (B) initial soil moisture, (C) minimum soil-moisture requirement, (D) effective precipitation, and (E) evapotranspiration ..
The U.S. Geological Survey's Soil-Water-Balance (SWB) code was developed as a tool to estimate distribution and timing of net infiltration out of the root zone by means of an approach that uses readily available data and minimizes user effort required to begin a SWB application. SWB calculates other components of the water balance, including soil moisture, reference and actual evapotranspiration, snowfall, snowmelt, canopy interception, and crop-water demand. SWB is based on a modified Thornthwaite-Mather soil-waterbalance approach, with components of the soil-water balance calculated at a daily time step. Net-infiltration calculations are computed by means of a rectangular grid of computational elements, which allows the calculated infiltration rates to be imported into grid-based regional groundwater-flow models. SWB makes use of gridded datasets, including datasets describing hydrologic soil groups, moisture-retaining capacity, flow direction, and land use. Climate data may be supplied in gridded or tabular form. The SWB 2.0 code described in this report extends capabilities of the original SWB version 1.0 model by adding new options for representing physical processes and additional data input and output capabilities. New methods included in SWB 2.0 allow for direct gridded input of externally calculated water-budget components (fog, septic, and storm-sewer leakage), simulation of canopy interception by several alternative processes, and a crop-water demand method for estimating irrigation amounts. New input and output capabilities allow for grids with differing spatial extents and projections to be combined without requiring the user to resample and resize the grids before use.
Les Arihood, Scientist Emeritus, U.S. Geological Survey (USGS), for his assistance in interpreting water-well drillers' records for the lithologic database and Sue Kahle, USGS hydrologist, for her contribution to the discussion of glacial geology in the northwestern United States. Finally, we thank Tom Nolan, USGS hydrologist, for his application of the dendrogram analysis in the comparison of sediment and aquifer characteristics of hydrogeologic terranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.