The numerical simulation of structural mechanics applications via finite elements usually requires the solution of large-size and ill-conditioned linear systems, especially when accurate results are sought for derived variables interpolated with lower order functions, like stress or deformation fields. Such task represents the most time-consuming kernel in commercial simulators; thus, it is of significant interest the development of robust and efficient linear solvers for such applications. In this context, direct solvers, which are based on LU factorization techniques, are often used due to their robustness and easy setup; however, they can reach only superlinear complexity, in the best case, thus, have limited applicability depending on the problem size. On the other hand, iterative solvers based on algebraic multigrid (AMG) preconditioners can reach up to linear complexity for sufficiently regular problems but do not always converge and require more knowledge from the user for an efficient setup. In this work, we present an adaptive AMG method specifically designed to improve its usability and efficiency in the solution of structural problems. We show numerical results for several practical applications with millions of unknowns and compare our method with two state-of-the-art linear solvers proving its efficiency and robustness.
The numerical simulation of modern engineering problems can easily incorporate millions or even billions of unknowns. In several applications, sparse linear systems with symmetric positive definite matrices need to be solved, and algebraic multigrid (AMG) methods represent common choices for the role of iterative solvers or preconditioners. The reason for their popularity relies on the fast convergence that these methods provide even in the solution of large size problems, which is a consequence of the AMG ability to reduce particular error components across their multilevel hierarchy. Despite carrying the name ``algebraic,"" most of these methods still make assumptions on additional information other than the global assembled matrix, such as the knowledge of the operator's near kernel, which limits their applicability as black-box solvers. In this work, we introduce a novel AMG approach featuring the adaptive factored sparse approximate inverse (aFSAI) method as a flexible smoother, as well as three new approaches to adaptively compute the prolongation operator. We assess the performance of the proposed AMG through the solution of a set of model problems along with real-world engineering test cases. Moreover, we perform comparisons to other methods such as the aFSAI and BoomerAMG preconditioners, showing that our new method proves to be superior to the first strategy and comparable to the second one, if not better, as in the solution of linear elasticity models.
The use of factorized sparse approximate inverse (FSAI) preconditioners in a standard multilevel framework for symmetric positive definite (SPD) matrices may pose a number of issues as to the definiteness of the Schur complement at each level. The present work introduces a robust multilevel approach for SPD problems based on FSAI preconditioning, which eliminates the chance of algorithmic breakdowns independently of the preconditioner sparsity. The Multilevel FSAI algorithm is further enhanced by introducing Descending and Ascending Low-Rank corrections, thus giving rise to the MFLR preconditioner. The proposed algorithm is investigated in a number of test problems. The numerical results show that the MFLR preconditioner is a robust approach that can significantly accelerate the solver convergence rate preserving a good degree of parallelism. The possibly large setup cost, mainly due to the computation of the eigenpairs needed by Low-Rank corrections, makes its use attractive in applications where the preconditioner can be recycled along a number of linear solves.
Summary Factorized sparse approximate inverse (FSAI) preconditioners are robust algorithms for symmetric positive matrices, which are particularly attractive in a parallel computational environment because of their inherent and almost perfect scalability. Their parallel degree is even redundant with respect to the actual capabilities of the current computational architectures. In this work, we present two new approaches for FSAI preconditioners with the aim of improving the algorithm effectiveness by adding some sequentiality to the native formulation. The first one, denoted as block tridiagonal FSAI, is based on a block tridiagonal factorization strategy, whereas the second one, domain decomposition FSAI, is built by reordering the matrix graph according to a multilevel k‐way partitioning method followed by a bandwidth minimization algorithm. We test these preconditioners by solving a set of symmetric positive definite problems arising from different engineering applications. The results are evaluated in terms of performance, scalability, and robustness, showing that both strategies lead to faster convergent schemes regarding the number of iterations and total computational time in comparison with the native FSAI with no significant loss in the algorithmic parallel degree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.