In this paper, we present results of a study of the data rate fairness among nodes within a LoRaWAN cell. Since LoRa/LoRaWAN supports various data rates, we firstly derive the fairest ratios of deploying each data rate within a cell for a fair collision probability. LoRa/LoRaWAN, like other frequency modulation based radio interfaces, exhibits the capture effect in which only the stronger signal of colliding signals will be extracted. This leads to unfairness, where far nodes or nodes experiencing higher attenuation are less likely to see their packets received correctly. Therefore, we secondly develop a transmission power control algorithm to balance the received signal powers from all nodes regardless of their distances from the gateway for a fair data extraction. Simulations show that our approach achieves higher fairness in data rate than the state-of-art in almost all network configurations.
LoRaWAN promises to provide wide-area network access to low-cost devices that can operate for up to 10 years on a single 1000mAh battery. This makes LoRaWAN particularly suited to data collection applications (e.g. monitoring applications), where device lifetime is a key performance metric. However, when supporting a large number of devices, LoRaWAN suffers from a scalability issue due to the high collision probability of its Aloha-based MAC layer. The performance worsens further when using acknowledged transmissions due to the duty cycle restriction at the gateway. For this, we propose FREE, a fine-grained scheduling scheme for reliable and energyefficient data collection in LoRaWAN. FREE takes advantage of applications that do not have hard delay requirements on data delivery by supporting synchronized bulk data transmission. This means data is buffered for transmission in scheduled time slots instead of transmitted straight away. FREE allocates spreading factors, transmission powers, frequency channels, time slots, and schedules slots in frames for LoRaWAN end-devices. As a result, FREE overcomes the scalability problem of LoRaWAN by eliminating collisions and grouping acknowledgments. We evaluate the performance of FREE versus different legacy LoRaWAN configurations. The numerical results show that FREE scales well and achieves almost 100% data delivery and the device lifetime is estimated to over 10 years independent of traffic type and network size. Comparing to poor scalability, low data delivery and device lifetime of fewer than 2 years for acknowledged data traffic in the standard LoRaWAN configurations.
A thermoelectric energy harvester powered wireless sensor networks (WSNs) module designed for building energy management (BEM) applications is built and tested in this work. An analytic thermoelectric generator (TEG) electrical model is built and verified based on parameters given in manufacturer data sheets of Bismuth Telluride TEGs. A charge pump/switching regulator two-stage ultra-low voltage step-up DC/DC converter design is presented in this work to boost the <0.5 V output voltage of TEG to usable voltage level for WSN (3.3 V). The design concept, device simulation, circuits schematic, and the measurement results are presented in detail. The prototype device test results show 25% end-to-end conversion efficiency in a wide range of input temperatures/voltages. Further tests demonstrate that the proposed thermoelectric generator design can effectively power WSN module which operates with a 1.7% duty cycle (5.8 seconds measurement time interval) when the prototype is placed on a typical wall-mount heater (60 ∘ C surface temperature). The thermoelectric energy harvesting powered WSN demonstrates duty cycles significantly higher than the required duty cycle for BEM WSN applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.