SUMMARY:Our aim was to review the etiologic background of isolated acute nontraumatic cSAH. While SAH located in the basal cisterns originates from a ruptured aneurysm in approximately 85% of cases, a broad spectrum of vascular and even nonvascular pathologies can cause acute nontraumatic SAH along the convexity. Arteriovenous malformations or fistulas, cortical venous and/or dural sinus thrombosis, and distal and proximal arteriopathies (RCVS, vasculitides, mycotic aneurysms, Moyamoya, or severe atherosclerotic carotid disease) should be sought by noninvasive imaging methods or/and conventional angiography. Additionally, PRES may also be a source of acute cSAH. In elderly patients, cSAH might be attributed to CAA if numerous hemorrhages are demonstrated by GRE T2 images. Finally, cSAH is rarely observed in nonvascular disorders, such as abscess and primitive or secondary brain tumors.ABBREVIATIONS: CAA ϭ cerebral amyloid angiopathy; cSAH ϭ cortical subarachnoid hemorrhage; CTA ϭ CT angiography; CTV ϭ CT venography; CVT ϭ cerebral venous thrombosis; DSA ϭ digital subtraction angiography; DWI ϭ diffusion-weighted imaging; FLAIR ϭ fluid-attenuated inversion recovery; Gd ϭ gadolinium; GRE T2 ϭ gradient echo T2-weighted imaging; MRA ϭ MR angiography; MRV ϭ MR venography; PRES ϭ posterior reversible encephalopathy syndrome; RCVS ϭ reversible cerebral vasoconstriction syndrome; SAH ϭ subarachnoid hemorrhage; SWI ϭ susceptibility-weighted imaging; TIA ϭ transient ischemic attack; TOF ϭ time of flight N ontraumatic (spontaneous) SAH arises in approximately 85% of cases from rupture of a saccular aneurysm at the base of the brain. Nonaneurysmal perimesencephalic hemorrhages account for another 10%.
Our findings suggest that CAA could be a common cause of cSAH in the elderly with a fairly uniform clinical presentation. In addition to prior cortical bleeding (ICH, MBs), most patients from the present series had evidence of focal cortical hemosiderosis likely corresponding with prior unrecognized cSAH and suggesting that cSAH was a recurrent event.
This article reviews the most relevant state-of-the-art magnetic resonance (MR) techniques, which are clinically available to investigate brain diseases. MR acquisition techniques addressed include notably diffusion imaging (diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), and diffusion kurtosis imaging (DKI)) as well as perfusion imaging (dynamic susceptibility contrast (DSC), arterial spin labeling (ASL), and dynamic contrast enhanced (DCE)). The underlying models used to process these images are described, as well as the theoretic underpinnings of quantitative diffusion and perfusion MR imaging-based methods. The technical requirements and how they may help to understand, classify, or follow-up neurological pathologies are briefly summarized. Techniques, principles, advantages but also intrinsic limitations, typical artifacts, and alternative solutions developed to overcome them are discussed. In this article, we also review routinely available three-dimensional (3D) techniques in neuro MRI, including state-of-the-art and emerging angiography sequences, and briefly introduce more recently proposed 3D quantitative neuro-anatomy sequences, and new technology, such as multi-slice and multi-transmit imaging.
BackgroundWhite matter hyperintensities (WMH) lesions on T2/FLAIR brain MRI are frequently seen in healthy elderly people. Whether these radiological lesions correspond to irreversible histological changes is still a matter of debate. We report the radiologic-histopathologic concordance between T2/FLAIR WMHs and neuropathologically confirmed demyelination in the periventricular, perivascular and deep white matter (WM) areas.ResultsInter-rater reliability was substantial-almost perfect between neuropathologists (kappa 0.71 - 0.79) and fair-moderate between radiologists (kappa 0.34 - 0.42). Discriminating low versus high lesion scores, radiologic compared to neuropathologic evaluation had sensitivity / specificity of 0.83 / 0.47 for periventricular and 0.44 / 0.88 for deep white matter lesions. T2/FLAIR WMHs overestimate neuropathologically confirmed demyelination in the periventricular (p < 0.001) areas but underestimates it in the deep WM (0 < 0.05). In a subset of 14 cases with prominent perivascular WMH, no corresponding demyelination was found in 12 cases.ConclusionsMRI T2/FLAIR overestimates periventricular and perivascular lesions compared to histopathologically confirmed demyelination. The relatively high concentration of interstitial water in the periventricular / perivascular regions due to increasing blood–brain-barrier permeability and plasma leakage in brain aging may evoke T2/FLAIR WMH despite relatively mild demyelination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.