Two-dimensional heterostructures are excellent platforms to realize twistangle independent ultra-low friction due to their weak interlayer van der Waals interactions and natural lattice mismatch. However, for finite-size interfaces, the effect of domain edges on the friction process remains unclear. Here, we report on the superlubricity phenomenon and the edge pinning effect at MoS 2 /graphite and MoS 2 /h-BN van der Waals heterostructure interfaces. We find that friction coefficients of these heterostructures are below 10 -6 . Molecular dynamics simulations corroborate experiments highlighting the contribution of edges and interface steps to friction forces. Our experiments and simulations provide more information on the sliding mechanism of finite low-dimensional structures, which is vital to understand the friction process of laminar solid lubricants.
Apurinic/apyrimidinic (AP) sites are the most common DNA lesions, which benefit from a most efficient repair by the base excision pathway. The impact of losing a nucleobase on the conformation and dynamics of B-DNA is well characterized. Yet AP sites seem to present an entirely different chemistry in nucleosomal DNA, with lifetimes reduced up to 100-fold, and the much increased formation of covalent DNA-protein cross-links leading to strand breaks, refractory to repair. We report microsecond range, all-atom molecular dynamics simulations that capture the conformational dynamics of AP sites and their tetrahydrofuran analogs at two symmetrical positions within a nucleosome core particle, starting from a recent crystal structure. Different behaviours between the deoxyribo-based and tetrahydrofuran-type abasic sites are evidenced. The two solvent-exposed lesion sites present contrasted extrahelicities, revealing the crucial role of the position of a defect around the histone core. Our all-atom simulations also identify and quantify the frequency of several spontaneous, non-covalent interactions between AP and positively-charged residues from the histones H2A and H2B tails that prefigure DNA-protein cross-links. Such an in silico mapping of DNA-protein cross-links gives important insights for further experimental studies involving mutagenesis and truncation of histone tails to unravel mechanisms of DPCs formation.
Nanostructured materials are essential
building blocks for the fabrication of new devices for energy harvesting/storage,
sensing, catalysis, magnetic, and optoelectronic applications. However,
because of the increase of technological needs, it is essential to
identify new functional materials and improve the properties of existing
ones. The objective of this Viewpoint is to examine the state of the
art of atomic-scale simulative and experimental protocols aimed to
the design of novel functional nanostructured materials, and to present
new perspectives in the relative fields. This is the result of the
debates of Symposium I “Atomic-scale design protocols towards
energy, electronic, catalysis, and sensing applications”, which
took place within the 2018 European Materials Research Society fall
meeting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.