Coronary artery disease (CAD) is the leading cause of death globally. Genome-wide association studies (GWASs) have identified more than 95 independent loci that influence CAD risk, most of which reside in non-coding regions of the genome. To interpret these loci, we generated transcriptome and whole-genome datasets using human coronary artery smooth muscle cells (HCASMCs) from 52 unrelated donors, as well as epigenomic datasets using ATAC-seq on a subset of 8 donors. Through systematic comparison with publicly available datasets from GTEx and ENCODE projects, we identified transcriptomic, epigenetic, and genetic regulatory mechanisms specific to HCASMCs. We assessed the relevance of HCASMCs to CAD risk using transcriptomic and epigenomic level analyses. By jointly modeling eQTL and GWAS datasets, we identified five genes (SIPA1, TCF21, SMAD3, FES, and PDGFRA) that may modulate CAD risk through HCASMCs, all of which have relevant functional roles in vascular remodeling. Comparison with GTEx data suggests that SIPA1 and PDGFRA influence CAD risk predominantly through HCASMCs, while other annotated genes may have multiple cell and tissue targets. Together, these results provide tissue-specific and mechanistic insights into the regulation of a critical vascular cell type associated with CAD in human populations.
To functionally link coronary artery disease (CAD) causal genes identified by genome wide association studies (GWAS), and to investigate the cellular and molecular mechanisms of atherosclerosis, we have used chromatin immunoprecipitation sequencing (ChIP-Seq) with the CAD associated transcription factor TCF21 in human coronary artery smooth muscle cells (HCASMC). Analysis of identified TCF21 target genes for enrichment of molecular and cellular annotation terms identified processes relevant to CAD pathophysiology, including “growth factor binding,” “matrix interaction,” and “smooth muscle contraction.” We characterized the canonical binding sequence for TCF21 as CAGCTG, identified AP-1 binding sites in TCF21 peaks, and by conducting ChIP-Seq for JUN and JUND in HCASMC confirmed that there is significant overlap between TCF21 and AP-1 binding loci in this cell type. Expression quantitative trait variation mapped to target genes of TCF21 was significantly enriched among variants with low P-values in the GWAS analyses, suggesting a possible functional interaction between TCF21 binding and causal variants in other CAD disease loci. Separate enrichment analyses found over-representation of TCF21 target genes among CAD associated genes, and linkage disequilibrium between TCF21 peak variation and that found in GWAS loci, consistent with the hypothesis that TCF21 may affect disease risk through interaction with other disease associated loci. Interestingly, enrichment for TCF21 target genes was also found among other genome wide association phenotypes, including height and inflammatory bowel disease, suggesting a functional profile important for basic cellular processes in non-vascular tissues. Thus, data and analyses presented here suggest that study of GWAS transcription factors may be a highly useful approach to identifying disease gene interactions and thus pathways that may be relevant to complex disease etiology.
Highlights d An acyltransferase (atf3) is prevalent in ST258 K. pneumoniae d Expression of atf3 enhances glycolysis, increasing bacterial ATP production and ROS d With atf3, the airway metabolome was altered with greater glucose consumption d K. pneumoniae expressing atf3 has a competitive advantage in vivo
Coronary artery disease (CAD) is the leading cause of death globally. Genome-wide association studies (GWAS) have identified more than 95 independent loci that influence CAD risk, most of which reside in non-coding regions of the genome. To interpret these loci, we generated transcriptome and whole-genome datasets using human coronary artery smooth muscle cells (HCASMC) from 52 unrelated donors, as well as epigenomic datasets using ATAC-seq on a subset of 8 donors. Through systematic comparison with publicly available datasets from GTEx and ENCODE projects, we identified transcriptomic, epigenetic, and genetic regulatory mechanisms specific to HCASMC. We assessed the relevance of HCASMC to CAD risk using transcriptomic and epigenomic level analyses. By jointly modeling eQTL and GWAS datasets, we identified five genes (SIPA1, TCF21, SMAD3, FES, and PDGFRA) that modulate CAD risk through HCASMC, all of which have relevant functional roles in vascular remodeling. Comparison with GTEx data suggests that SIPA1 and PDGFRA influence CAD risk predominantly through HCASMC, while other annotated genes may have multiple cell and tissue targets. Together, these results provide new tissue-specific and mechanistic insights into the regulation of a critical vascular cell type associated with CAD in human populations.
Objective More than one third of appropriately treated patients with epilepsy have continued seizures despite two or more medication trials, meeting criteria for drug‐resistant epilepsy (DRE). Accurate and reliable identification of patients with DRE in observational data would enable large‐scale, real‐world comparative effectiveness research and improve access to specialized epilepsy care. In the present study, we aim to develop and compare the performance of computable phenotypes for DRE using the Observational Medical Outcomes Partnership (OMOP) Common Data Model. Methods We randomly sampled 600 patients from our academic medical center's electronic health record (EHR)‐derived OMOP database meeting previously validated criteria for epilepsy (January 2015–August 2021). Two reviewers manually classified patients as having DRE, drug‐responsive epilepsy, undefined drug responsiveness, or no epilepsy as of the last EHR encounter in the study period based on consensus definitions. Demographic characteristics and codes for diagnoses, antiseizure medications (ASMs), and procedures were tested for association with DRE. Algorithms combining permutations of these factors were applied to calculate sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for DRE. The F1 score was used to compare overall performance. Results Among 412 patients with source record‐confirmed epilepsy, 62 (15.0%) had DRE, 163 (39.6%) had drug‐responsive epilepsy, 124 (30.0%) had undefined drug responsiveness, and 63 (15.3%) had insufficient records. The best performing phenotype for DRE in terms of the F1 score was the presence of ≥1 intractable epilepsy code and ≥2 unique non‐gabapentinoid ASM exposures each with ≥90‐day drug era (sensitivity = .661, specificity = .937, PPV = .594, NPV = .952, F1 score = .626). Several phenotypes achieved higher sensitivity at the expense of specificity and vice versa. Significance OMOP algorithms can identify DRE in EHR‐derived data with varying tradeoffs between sensitivity and specificity. These computable phenotypes can be applied across the largest international network of standardized clinical databases for further validation, reproducible observational research, and improving access to appropriate care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.