Dengue is of great concern in various parts of the world, especially in tropical and subtropical countries where the mosquito vectors Aedes aegypti and Aedes albopictus are present. The transmission of this virus to humans, by what is known as horizontal transmission, occurs through the bite of infected females of one or other of the two mosquito species. Furthermore, an infected female or male parent, by what is known as vertical transmission, can transfer this arbovirus to some part of their offspring. Considering that vertical transmission may represent an important strategy for maintaining the circulation of arboviruses in nature, the verification of this phenomenon worldwide is extremely important and necessary to better understand its dynamic. In the present study, we conducted a literature review of the presence of natural vertical transmission of dengue virus in Ae. aegypti and Ae. albopictus worldwide. Searches were conducted in MEDLINE, sciELO and Lilacs and all the studies published in Portuguese, English and Spanish were read, evaluated and organized by mosquito species, serotype and the location at which the samples were collected. Forty-two studies were included in accordance with the exclusion criteria and methodology. The presence of natural vertical transmission in Ae. aegypti and Ae. albopictus was most clearly evidenced by dengue virus in endemic countries, especially in those in South America and Asia. Despite several African countries being considered endemic for dengue, there is a lack of publications on this subject on that continent, which highlights the importance of conducting studies there. Furthermore, the finding of natural vertical transmission in Ae. albopictus in countries where this species is not yet incriminated as a vector is of great concern as it demonstrates the circulation of this virus in populations of Ae. albopictus and alerts to the possibility of some other mosquito species playing a role in the transmission dynamics of this arbovirus. Parallel to this, the small number of studies of natural vertical transmission of chikungunya and Zika virus in the world may be explained by the recent entry of these arboviruses into most of the countries concerned.
Vertical transmission in Aedes aegypti and Aedes albopictus is considered a maintenance mechanism for dengue virus (DENV) during unfavorable conditions and may be implicated in dengue outbreaks. Since DENV infection dynamics vary among wild-type viruses and vector populations, vertical transmission rates can also vary between regions. However, even though São Paulo is the most populous city in the Americas and has experienced major dengue epidemics, natural vertical transmission had never been detected in this area before. Here we confirm and describe for the first time natural vertical transmission of DENV-3 in two pools of male Ae. albopictus from the city of São Paulo. The detection of DENV-3 in years when no human autochthonous cases of this serotype were recorded suggests that silent circulation of DENV-3 is occurring and indicates that green areas may be maintaining serotypes that are not circulating in the human population, possibly by a vertical transmission mechanism.
This study tests the hypotheses that the locomotor activity of Ae. albopictus females is not significantly altered by the presence of accessory gland (AG) extracts from conspecific and heterospecific males, and that Ae. albopictus females remain receptive to mating with conspecific males even after receiving AG of Ae. aegypti males. Virgin Ae. albopictus females were injected with saline (control group), AG extracts of Ae. aegypti males (aegMAG) or AG extracts of Ae. albopictus males (albMAG). Locomotor activity was evaluated under 12 h of light and 12 h of darkness at 25 °C. All live Ae. albopictus females were subsequently exposed to conspecific males for 48 h, and their spermathecae were dissected for the presence of sperm. Females injected with aegMAG and albMAG showed significant decreases in total, diurnal and diurnal without lights-on Period activities. Females injected with aegMAG showed significant decreases in nocturnal and nocturnal without lights-off period activities. Females injected with albMAG showed significant decreases in lights-off activity. A total of 83% of Ae. albopictus females injected with aegMAG and 10% of females injected with albMAG were inseminated by conspecific males. These results, coupled with our previous paper on MAG and interspecific mating effects on female Ae. aegypti, demonstrate contrasting outcomes on locomotor activities and loss of sexual receptivity, both conspecific and heterospecific MAGs capable of sterilizing virgin Ae. aegypti, but only conspecific MAGs sterilizing Ae. albopictus, whereas locomotor activities were depressed in females of both species after heterospecific and conspecific injections or treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.