The thermoelastic properties and the elastocaloric effect (ECE) were studied in rapidly quenched ribbons of the Ti2NiCu alloy samples in amorphous and crystalline states under periodic mechanical tension with a frequency of up to 50 Hz. In the amorphous samples, elastic behavior is observed, described by Hooke’s law, with a high coefficient of thermal expansion α = 1.7 × 10−4 K−1. Polycrystalline ribbons of the Ti2NiCu alloy have the classical shape memory effect (SME), the temperatures of the forward and reverse thermoelastic martensitic transitions being Ms = 345 K, Mf = 325 K, As = 332 K, and Af = 347 K and the coefficient of the dependence of the transition temperature on mechanical stress being β = 0.12 K/MPa. The experimentally measured value of the adiabatic temperature change under the action of mechanical stress (ECE) in the amorphous state of the alloy at room temperature (Tr = 300 K) was ΔT = −2 K, with a relative elongation of ε = 1.5% and a mechanical stress of σ = 243 MPa. For crystalline samples of Ti2NiCu alloy ribbons, the ECE is maximum near the completion temperature of the reverse thermoelastic martensitic transformation Af, and its value was 21 K and 7 K under cyclic mechanical loads of 300 and 100 MPa, respectively. It is shown that the ECE value does not depend on the frequency of external action in the range from 0 to 50 Hz. The specific power of the rapidly quenched ribbon was evaluated as a converter of thermal energy at an external mechanical stress of 100 MPa; its value was 175 W/g at a frequency of 50 Hz. The thermodynamic model based on the Landau theory of phase transitions well explains the properties of both amorphous ribbons (reverse ECE) and alloy ribbons with EPF (direct ECE).
This study is focused on a bottom-up nano-integration route for the production of carbon based spintronic devices. In order to enhance magnetic interactions along nanotube walls a controlled synthetic chemical technique is utilized, this method is based on a two-step method which firstly looks at the functionalization of nanotubes (carbonyl groups) and subsequently the attachment of an organo-metallic complex to the carbonyl group. The system is then characterized in bulk, including magnetometry analysis as well as transport at low temperatures. Mesoscopic electron-spin correlations have been observed as well as a clear crossover from superparamagnetism to weakly ferromagnetic depending on the functionalization technique. We then demonstrate a novel fabrication technique based on nano-integration utilizing a nano-tweezer created from a memory metal alloy. The devices envisioned include quantum rings, crossed junction as well as fine network structures that can be manipulated using nano-probes. As the carbon nanotubes have been functionalized with nanoscale magnetic molecules, such devices are interesting for novel spintronic applications.
In this paper, we investigated the influence of additional compounds of Dy-Nb-Al, Nd-Cu-Al… on the coercivity of the sintered Nd16.5Fe77B6.5 magnets. The additional compounds were first prepared by arc-melting method and then ground into particles with size in the range of 40 - 80 nm using a high energy ball milling method. After that, the additional powder were mixed with micrometer Nd-Fe-B powder before magnetic anisotropic pressing, vacuum sintering and annealing. The structure of the magnets was thoroughly analyzed using X-ray diffraction and electron microscopy techniques. The magnetic properties of the magnets were investigated on a pulsed field magnetometer. The results show that the coercivity of the sintered Nd-Fe-B magnets can be improved by introducing additional nanoparticles to their grain boundaries. The improvement of the coercivity of the magnets is clearly dependent on composition and fraction of the additional compounds. The coercivity has been enhanced 40% for the magnets by adding 3 wt% of the Dy-free compound of Nd40Cu30Al30.
Ukraine 2 Donetsk institute for physics and engineering named after A.A.Galkin, 83001, R. Luxemburg str. 72, Donetsk, Ukraine 3 Kotel'nikov institute of radio engineering and electronics of RAS, 125009, Mokhovaya str., Moscow, Russia Abstract. It is shown that for the quasinormal remagnetization of the submicron YIG films with the normal along the [111] axis, which are in the single-domain state, two types of orientation transitions (OT) due to the influence of easy axes can be distinguished. The nonreciprocity of the FMR spectrum for forward and reverse magnetization due to the influence of easy axes is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.