Intrinsic flexibility of DNA has hampered the development of efficient protein−DNA docking methods. In this study we extend HADDOCK (High Ambiguity Driven DOCKing) [C. Dominguez, R. Boelens and A. M. J. J. Bonvin (2003) J. Am. Chem. Soc. 125, 1731–1737] to explicitly deal with DNA flexibility. HADDOCK uses non-structural experimental data to drive the docking during a rigid-body energy minimization, and semi-flexible and water refinement stages. The latter allow for flexibility of all DNA nucleotides and the residues of the protein at the predicted interface. We evaluated our approach on the monomeric repressor−DNA complexes formed by bacteriophage 434 Cro, the Escherichia coli Lac headpiece and bacteriophage P22 Arc. Starting from unbound proteins and canonical B-DNA we correctly predict the correct spatial disposition of the complexes and the specific conformation of the DNA in the published complexes. This information is subsequently used to generate a library of pre-bent and twisted DNA structures that served as input for a second docking round. The resulting top ranking solutions exhibit high similarity to the published complexes in terms of root mean square deviations, intermolecular contacts and DNA conformation. Our two-stage docking method is thus able to successfully predict protein−DNA complexes from unbound constituents using non-structural experimental data to drive the docking.
The CAPRI and CASP prediction experiments have demonstrated the power of community wide tests of methodology in assessing the current state of the art and spurring progress in the very challenging areas of protein docking and structure prediction. We sought to bring the power of community wide experiments to bear on a very challenging protein design problem that provides a complementary but equally fundamental test of current understanding of protein-binding thermodynamics. We have generated a number of designed protein-protein interfaces with very favorable computed binding energies but which do not appear to be formed in experiments, suggesting there may be important physical chemistry missing in the energy calculations. 28 research groups took up the challenge of determining what is missing: we provided structures of 87 designed complexes and 120 naturally occurring complexes and asked participants to identify energetic contributions and/or structural features that distinguish between the two sets. The community found that electrostatics and solvation terms partially distinguish the designs from the natural complexes, largely due to the non-polar character of the designed interactions. Beyond this polarity difference, the community found that the designed binding surfaces were on average structurally less embedded in the designed monomers, suggesting that backbone conformational rigidity at the designed surface is important for realization of the designed function. These results can be used to improve computational design strategies, but there is still much to be learned; for example, one designed complex, which does form in experiments, was classified by all metrics as a non-binder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.