Although the post-mortem diagnosis of bovine tuberculosis is mainly achieved through microbiological culture, the development of other techniques to detect Mycobacterium tuberculosis complex (MTBC) members directly from tissue samples has been pursued. The present study describes the development, optimization and validation of a Real-Time PCR based on the mpb70 gene to detect MTBC members in clinical tissue samples from cattle. Specific primers and a hybridization probe were used to amplify MTBC-specific sequences in order to avoid cross-reaction with non-MTBC species. An Internal Amplification Control (IAC) was included in order to assess the presence of PCR inhibitors in the samples. The PCR was optimized to achieve maximum efficiency, and the limit of detection, limit of quantification and dynamic range of the reaction were determined. The specificity of the reaction was tested against 34 mycobacterial and non-mycobacterial species. The diagnostic sensitivity, specificity and positive and negative predictive values (PPV and NPV) of the method were assessed on 200 bovine tissue samples in relation to bacteriological culture. The dynamic range of the reaction spanned from 5 ng/reaction (10 6 genome equivalents) to 50 fg/reaction (10 genome equivalents). The efficiency of the reaction was 102.6% and the achieved R 2 was 0.999. The limit of detection with 95% confidence was 10 genome equivalents/reaction. No cross-reactions with non-MTBC species were observed. The diagnostic sensitivity and specificity values of the mpb70 specific Real-Time PCR respect to culture were 94.59% (95% CI: 86.73–98.51%) and 96.03% (95% CI: 90.98–98.70%), respectively, with a PPV of 93.33% (95% CI: 85.55–97.07%) and a NPV of 96.80% (95% CI: 92.10–98.74%). The concordance of the Real-Time PCR based on mpb70 is comparable to that of culture (K = 0.904) showing a great potential for the detection of members of the MTBC in animal tissues.
Effective vaccines against tuberculosis (TB) are needed in order to prevent TB transmission in human and animal populations. Evaluation of TB vaccines may be facilitated by using reliable animal models that mimic host pathophysiology and natural transmission of the disease as closely as possible. In this study, we evaluated the immunogenicity and efficacy of two attenuated vaccines, BCG and MTBVAC, after each was given to 17 goats (2 months old) and then exposed for 9 months to goats infected with M. caprae. In general, MTBVAC-vaccinated goats showed higher interferon-gamma release than BCG vaccinated goats in response to bovine protein purified derivative and ESAT-6/CFP-10 antigens and the response was significantly higher than that observed in the control group until challenge. All animals showed lesions consistent with TB at the end of the study. Goats that received either vaccine showed significantly lower scores for pulmonary lymph nodes and total lesions than unvaccinated controls. Both MTBVAC and BCG vaccines proved to be immunogenic and effective in reducing severity of TB pathology caused by M. caprae. Our model system of natural TB transmission may be useful for evaluating and optimizing vaccines.
Bovine tuberculosis (bTB) is an ongoing issue in several countries within the European Union (EU). Microbiological culture is the official confirmation technique for the presence of Mycobacterium tuberculosis complex (MTBC) members in bovine tissues, but several methodological issues, such as moderate sensitivity and long incubation times, require the development of more sensitive and rapid techniques. This study evaluates the analytical and diagnostic performance, comparatively to culture, of a real-time PCR targeting the MTBC-specific IS6110 transposon using a panel of bovine tissue samples sourced from the Spanish bTB eradication campaign. Robustness and repeatability were evaluated in an inter-laboratory trial between EU National Reference Laboratories. The limit of detection with 95% confidence was established at 65 fg/reaction of purified genomic. Diagnostic sensitivity and specificity was, respectively, 96.45% and 93.66%, and the overall agreement (κ) was 0.88. Cross-reactivity was detected against two mycobacterial isolates identified as M. marinum and “M. avium subsp. hominissuis” species, and Whole Genome Sequence analysis of the latter isolate revealed an IS6110-like sequence with 83% identity. An identical IS-like element was found in other Mycobacterium avium Complex species in the NCBI nucleotide and WGS databases. Despite this finding, this methodology is considered a valuable alternative to culture and the strategy of use should be defined depending on the control or eradication programmes.
Avian influenza A viruses (AIVs) have a broad host range, but are most intimately associated with waterfowl (Anseriformes) and, in the case of the H13 and H16 subtypes, gulls (Charadriiformes). Host associations are multifactorial, but a key factor is the ability of the virus to bind host cell receptors and thereby initiate infection. The current study aims at investigating the tissue attachment pattern of a panel of AIVs, comprising H3N2, H6N1, H12N5, and H16N3, to avian trachea and colon tissue samples obtained from host species of different orders. Virus attachment was not restricted to the bird species or order from which the virus was isolated. Instead, extensive virus attachment was observed to several distantly related avian species. In general, more virus attachment and receptor expression were observed in trachea than in colon samples. Additionally, a human seasonal H3N2 virus was studied. Unlike the studied AIVs, this virus mainly attached to tracheae from Charadriiformes and a very limited set of avian cola. In conclusion, the reported results highlight the importance of AIV attachment to trachea in many avian species. Finally, the importance of chickens and mallards in AIVs dynamics was illustrated by the abundant AIV attachment observed.
Non-tuberculous mycobacteria (NTM) are difficult to identify by biochemical and genetic methods due to their microbiological properties and complex taxonomy. The development of more efficient and rapid methods for species identification in the veterinary microbiological laboratory is, therefore, of great importance. Although MALDI-TOF Mass Spectrometry (MS) has become a promising tool for the identification of NTM species in human clinical practise, information regarding its performance on veterinary isolates is scarce. This study assesses the capacity of MALDI-TOF MS to identify NTM isolates (n = 75) obtained from different animal species. MALDI-TOF MS identified 76.0% (n = 57) and 4% (n = 3) of the isolates with high and low confidence, respectively, in agreement with the identification achieved by Sanger sequencing of housekeeping genes (16S rRNA, hsp65, and rpoB). Thirteen isolates (17.3%) were identified by Sanger sequencing to the complex level, indicating that these may belong to uncharacterised species. MALDI-TOF MS approximated low confidence identifications toward closely related mycobacterial groups, such as the M. avium or M. terrae complexes. Two isolates were misidentified due to a high similarity between species or due to the lack of spectra in the database. Our results suggest that MALDI-TOF MS can be used as an effective alternative for rapid screening of mycobacterial isolates in the veterinary laboratory and potentially for the detection of new NTM species. In turn, Sanger sequencing could be implemented as an additional method to improve identifications in species for which MALDI-TOF MS identification is limited or for further characterisation of NTM species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.