It is necessary to analyze human gait for treatment and rehabilitation of human with musculoskeletal disorders of the locomotion apparatus (LA). The main goal of this work is evaluation of locomotion apparatus motion parameters captured by inertial measurement units (IMU) during walking. Motion Capture technology is process of getting practical results and data from IMU installed in different parts of human lower limbs. Synchronously, IMU send information about human movements to PC at the same moment of time. Such method gives an opportunity to follow parameters in some points of human leg in real time. The way of devices mounting and instruction for human under monitoring are based on related medical projects. Walking is selected for estimation of the musculoskeletal system as typical action. Experiment results got from several experiments were considered and analyzed.Basically, walking is described as a set of the system “human” discrete states. In the same time, the IMU sensors transmit motion parameters data continuously. It is proposed to present the man as a system with a control signal in the form of the double support period. The length will be measured using data from IMU. Double support period is chosen because its presence distinguishes walking from running.The most attention is given to getting the same practical results and data that can be obtained by placing the devices in different parts of the body. Moreover, a technique of using inertial measurement devices for measuring human motion to get some numerical results is shown. The use of this technique in practice demonstrated that it can be used to obtain an objective parameter describing the motion of the person. Continuation of this work is directed to create a complete model of the lower limbs motion for usage in practice [1].
The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC). The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.