The energy monitoring of heritage buildings has, to date, been governed by methodologies and standards that have been defined in terms of sensors that record scalar magnitudes and that are placed in specific positions in the scene, thus recording only some of the values sampled in that space. In this paper, however, we present an alternative to the aforementioned technologies in the form of new sensors based on 3D computer vision that are able to record dense thermal information in a three-dimensional space. These thermal computer vision-based technologies (3D-TCV) entail a revision and updating of the current building energy monitoring methodologies. This paper provides a detailed definition of the most significant aspects of this new extended methodology and presents a case study showing the potential of 3D-TCV techniques and how they may complement current techniques. The results obtained lead us to believe that 3D computer vision can provide the field of building monitoring with a decisive boost, particularly in the case of heritage buildings.
Ductile iron (DI) can acquire various properties with the addition of alloying elements and through heat treatment. In this work, the effects of vanadium and molybdenum on the microstructure and corrosion resistance of DI and austempered ductile iron (ADI) were studied. Corrosion resistance was evaluated by potentiodynamic polarization techniques in 0.5 M H2SO4, 0.5 M NaCl, and 05 M NaOH as electrolyte. The ADI alloyed with vanadium presented anupper ausferritic microstructure consisting of broad ferrite needles, while the combination of vanadium and molybdenum allows obtaining a fine microstructure composed of ausferrite and thin needles of ferrite; this microstructure improves the corrosion resistance in NaCI and NaOH. The DI’s showed corrosion due to the galvanic pair between the graphite nodule and the ferrite; however, a high amount of carbide increases the corrosion resistance in H2SO4.
Lead was recovered through a direct smelting reduction route from a lead concentrate by using mixtures of Na2CO3 and SiC to 1000 °C. The lead concentrate was obtained from the mining State of Zacatecas, México by traditional mineral processing and froth flotation. The experimental trials showed that 86 wt.% of lead with a purity up to 97% can be recovered from the lead concentrate by a single step reduction process when 40 wt.% Na2CO3 and 0.4 g SiC were used in the initial charge. The process was modeled in the thermodynamic software FactSage 7.3 to evaluate the effect of adding different amounts of Na2CO3 on the lead recovery rates while holding constant the SiC amount and temperature. The stability phase diagram obtained showed that an addition of 34 wt.% Na2CO3 was enough to reach the highest lead recovery. It was observed that the interaction of Na2CO3 and SiC at a high temperature promotes the formation of C and Na2O, and SiO2, respectively, where the Na2O partially bonds with silica and sulfur forming Na2S and sodium silicates which may decrease the SO2 emissions and increase the weather degradation of the slag. The PbS was mainly reduced by the produced C and CO formed by the interaction between Na2CO3 and SiC at 1000 °C. The predicted results reasonably match with those obtained experimentally in the lead recovery rates and compounds formation.
A multiphase-hydrodynamic model was solved with the phase field method and the Cahn-Hilliard equation to simulate the behavior of particle injection with nitrogen as conveying gas through a submerged lance into a lead bath in two dimensions. The residence and mixing time were obtained for different operating parameters like gas flow rate, lance depth, and different kettle and lance dimensions. The residence and mixing time decreased when the injection rate and the lance diameter increased. Therefore, the particle will have less opportunity to react with the liquid bath decreasing the refining metal processes efficiency. When the lance height and kettle dimensions were increased, the residence and mixing time also increased. In order to have an efficient disengagement of the particles from the carrier gas within molten lead, the operating parameters must take into account the residence and mixing times. The Cahn-Hilliard equation represents adequately the hydrodynamic behavior in the lance-kettle system studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.