Both the programmed death (PD) 1–PD-ligand (PD-L) pathway and regulatory T (T reg) cells are instrumental to the maintenance of peripheral tolerance. We demonstrate that PD-L1 has a pivotal role in regulating induced T reg (iT reg) cell development and sustaining iT reg cell function. PD-L1−/− antigen-presenting cells minimally convert naive CD4 T cells to iT reg cells, showing the essential role of PD-L1 for iT reg cell induction. PD-L1–coated beads induce iT reg cells in vitro, indicating that PD-L1 itself regulates iT reg cell development. Furthermore, PD-L1 enhances and sustains Foxp3 expression and the suppressive function of iT reg cells. The obligatory role for PD-L1 in controlling iT reg cell development and function in vivo is illustrated by a marked reduction in iT reg cell conversion and rapid onset of a fatal inflammatory phenotype in PD-L1−/−PD-L2−/− Rag−/− recipients of naive CD4 T cells. PD-L1 iT reg cell development is mediated through the down-regulation of phospho-Akt, mTOR, S6, and ERK2 and concomitant with the up-regulation of PTEN, all key signaling molecules which are critical for iT reg cell development. Thus, PD-L1 can inhibit T cell responses by promoting both the induction and maintenance of iT reg cells. These studies define a novel mechanism for iT reg cell development and function, as well as a new strategy for controlling T reg cell plasticity.
Protein function arises from a poorly understood pattern of energetic interactions between amino acid residues. Sequence-based strategies for deducing this pattern have been proposed, but lack of benchmark data has limited experimental verification. Here, we extend deep-mutation technologies to enable measurement of many thousands of pairwise amino acid couplings in several homologs of a protein family – a deep coupling scan (DCS). The data show that cooperative interactions between residues are loaded in a sparse, evolutionarily conserved, spatially contiguous network of amino acids. The pattern of amino acid coupling is quantitatively captured in the coevolution of amino acid positions, especially as indicated by the statistical coupling analysis (SCA), providing experimental confirmation of the key tenets of this method. This work exposes the collective nature of physical constraints on protein function and clarifies its link with sequence analysis, enabling a general practical approach for understanding the structural basis for protein function.
Nematode species of the genus Contracaecum Railliet & Henry, 1912 have been reported around the world in many species of fish-eating birds and seals. Here, Contracaecum jorgei n. sp. is morphologically described using light and scanning electron microscopy for adults and fourth-stage larvae (L4) found in the bird Nannopterum brasilianus and third-stage larvae (L3) found in the freshwater fish Hoplias argentinensis, both from the province of Córdoba, Argentina. Additionally, sequences of cytochrome c oxidase subunit II were obtained from these specimens and molecular phylogenetic analysis was used to determine its relationships within the genus. The present species is distinguished from other species by the number and disposition of cephalic papillae; shape and size of the interlabia; length of the spicules; and number and arrangement of papillae in the posterior end of the male. Furthermore, in the molecular analyses, sequences obtained from adult L4 and L3 specimens of C. jorgei n. sp. were similar and grouped, forming an independent lineage, thus confirming it as a distinct species. Thus, morphological characteristics associated with molecular data support the proposal of a new species.
Parasitic copepods of the family Lernaeidae are often found infesting freshwater fishes worldwide. They cause lernaeosis, a disease that can lead to serious pathogenic effects on their fish hosts. The most common lernaeid is the Lernaea cyprinacea, which has been widely introduced through importation of tropical fishes, e.g. cyprinids. In South America, it is one of the most common parasites both in wild and in farmed fish in the central region of Argentina. The silverside Odontesthes bonariensis is the most important fish of the sport fisheries of Argentina and one of the fish most affected by lernaeosis. Six specimens of copepods were collected from 30 specimens of O. bonariensis collected in a Pampean shallow lake (33°25'28"S 62°53'56"W) of Córdoba (Argentina). The 28S rRNA gene of L. cyprinacea was amplified by means of PCR to obtain the 28S rDNA sequence. The sequence obtained of this parasite from Argentina showed high genetic similarity with those from various geographical origins. The present study provided molecular characterization of L. cyprinacea in South America for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.