The SOX11 gene is a member of the SOX (SRY-related HMG-box) family of transcription factors involved in the regulation of embryonic development and in the determination of cell fate.Recently, SOX11 variants were linked to cases of overlapping syndromes collectively termed SSRIDDs, which are mainly associated with variants in BAF complex genes. Patients with these various syndromes exhibit a spectrum of features including developmental delay, intellectual disability, feeding difficulties, hypotonia, short stature, microcephaly, fifth finger hypoplasia, behavioural problems and seizures. We report a novel de novo mutation in SOX11, c.146T>A [p.Ile49Asn], found by exome sequencing in a middle eastern child with intellectual deficiency, developmental delay, microcephaly, thick scalp hairs, long eyelashes and eyebrows, and low-set ears. No abnormalities of fingers were noted. The SOX11-related SSRIDD and a review of SOX11 reported cases are discussed.
Background Coronary Artery Disease (CAD) is the narrowing or blockage of the coronary arteries. It is closely associated with numerous genetics and environmental factors that have been extensively evaluated in various populations. In recent studies, severe phenotypes have been strongly linked to genetic risk factors. Methods This study investigated the association of clinical, demographic, and genetic factors with severe coronary artery stenosis phenotypes in our population composed of 1734 individuals with severe coronary stenosis (≥ 50% in coronary vessels) and comparing them to 757 controls with no evidence of stenosis on angiography. We performed generalized linear model (GLM) genome-wide association studies to evaluate three stratification models and their associations to characteristics of the clinical disease. In model 1, patients were not stratified. In model 2, patients were stratified based on presence or absence of CAD family history (FxCAD). In model 3, patients were stratified by young age of CAD onset. Results Eight SNPs (single nucleotide polymorphism) were significantly associated with severe CAD phenotypes in the various models $$\left( {p < 5 \times 10^{ - 7} } \right)$$ p < 5 × 10 - 7 , four of these SNPs were associated with severe CAD and the four others were specifically significant for young CAD patients. While these SNPs were not previously reported for association with CAD, six of them are present in genes that have already been linked to coronary disease. Conclusion In conclusion, this study presents new genetic factors associated with severe stenosis and highlights different risk factors associated with a young age at diagnosis of CAD.
Type 1, X‐linked Hyper‐IgM syndrome (HIGM1) is caused by mutations in the gene encoding the CD154 protein, also known as CD40 ligand (CD40LG). CD40L is expressed in activated T cells and interacts with CD40 receptor expressed on B lymphocytes and dendritic cells. Affected patients present cellular and humoral immune defects, with infections by intracellular, opportunistic and extracellular pathogens. In the present study we investigated the molecular defects underlying disease in four patients with HIGM1. We identified four distinct CD40L mutations, two of them which have not been previously described. P1 harboured the novel p.G227X mutation which abolished CD40L expression. P2 had a previously described frame shift deletion in exon 2 (p.I53fsX65) which also prevented protein expression. P3 demonstrated the previously known p.V126D change in exon 4, affecting the TNF homology (TNFH) domain. Finally, P4 evidenced the novel p.F229L mutation also located in the TNFH domain. In silico analysis of F229L predicted the change to be pathological, affecting the many hydrophobic interactions of this residue. Precise molecular diagnosis in HIGM syndrome allows reliable detection of carriers, making genetic counselling and prenatal diagnosis possible.
BackgroundHyperphosphatasia with mental retardation syndrome (HPMRS) is a recessive disorder characterized by high blood levels of alkaline phosphatase together with typical dysmorphic signs such as cleft palate, intellectual disability, cardiac abnormalities, and developmental delay. Genes involved in the glycosylphosphatidylinositol pathway and known to be mutated in HPMRS have never been characterized in the Lebanese population.Case presentationHerein, we describe a pair of monozygotic twins presenting with severe intellectual disability, distinct facial dysmorphism, developmental delay, and increased alkaline phosphatase level. Two individuals underwent whole exome sequencing followed by Sanger sequencing to confirm the co-segregation of the mutation in the consanguineous family. A biallelic loss of function mutation in PGAP3 was detected. Both patients were homozygous for the c.203delC (p.C68LfsX88) mutation and the parents were carriers confirming the founder effect of the mutation. High ALP serum levels confirmed the molecular diagnosis.ConclusionOur findings have illustrated the genomic profile of PGAP3-related HPMRS which is essential for targeted molecular and genetic testing. Moreover, we found previously unreported clinical findings such as hypodontia and skin hyperpigmentation. These features, together with the novel mutation expand the phenotypic and genotypic spectrum of this rare recessive disorder.
BACKGROUND There have been few improvements in cerebrospinal fluid (CSF) shunt technology since John Holter introduced the silicon valve, with overdrainage remaining a major source of complications. OBJECTIVE To better understand why valves are afflicted by supra-normal CSF flow rates. We present in Vitro benchtop analyses of flow through a differential pressure valve under simulated physiological conditions. METHODS The pseudo-ventricle benchtop valve testing platform that comprises a rigid pseudo-ventricle, compliance chamber, pulsation generator, and pressure sensors was used to measure flow rates through a differential pressure shunt valve under the following simulated physiological conditions: orientation (horizontal/vertical), compliance (low/medium/high), and pulsation generator force (low/medium/high). RESULTS Our data show that pulse pressures are faithfully transmitted from the ventricle to the valve, that lower compliance and higher pulse generator forces lead to higher pulse pressures in the pseudo-ventricle, and that both gravity and higher pulse pressure lead to higher flow rates. The presence of a valve mitigates but does not eliminate these higher flow rates. CONCLUSION Shunt valves are prone to gravity-dependent overdrainage, which has motivated the development of gravitational valves and antisiphon devices. This study shows that overdrainage is not limited to the vertical position but that pulse pressures that simulate rhythmic (eg, cardiac) and provoked (eg, Valsalva) physiological CSF pulsations increase outflow in both the horizontal and vertical positions and are dependent on compliance. A deeper understanding of the physiological parameters that affect intracranial pressure and flow through shunt systems is prerequisite to the development of novel valves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.