N-Acyl homoserine lactone (AHL) quorum sensing (QS) controls expression of over 200 genes in Pseudomonas aeruginosa. There are two AHL regulatory systems: the LasR-LasI circuit and the RhlR-RhlI system. We mapped transcription termination sites affected by AHL QS in P. aeruginosa, and in doing so we identified AHL-regulated small RNAs (sRNAs). Of interest, we noted that one particular sRNA was located within the rhlI locus. We found that rhlI, which encodes the enzyme that produces the AHL N-butanoyl-homoserine lactone (C4-HSL), is controlled by a 5′ untranslated region (UTR)-derived sRNA we name RhlS. We also identified an antisense RNA encoded opposite the beginning of the rhlI open reading frame, which we name asRhlS. RhlS accumulates as wild-type cells enter stationary phase and is required for the production of normal levels of C4-HSL through activation of rhlI translation. RhlS also directly posttranscriptionally regulates at least one other unlinked gene, fpvA. The asRhlS appears to be expressed at maximal levels during logarithmic growth, and we suggest RhlS may act antagonistically to the asRhlS to regulate rhlI translation. The rhlI-encoded sRNAs represent a novel aspect of RNA-mediated tuning of P. aeruginosa QS.
IMPORTANCE The opportunistic human pathogen Pseudomonas aeruginosa possesses multiple quorum sensing systems that regulate and coordinate production of virulence factors and adaptation to different environments. Despite extensive research, the regulatory elements that play a role in this complex network are still not fully understood. By using several RNA sequencing techniques, we were able to identify a small regulatory RNA we named RhlS. RhlS increases translation of RhlI, a key enzyme in the quorum sensing pathway, and represses the fpvA mRNA encoding one of the siderophore pyoverdine receptors. Our results highlight a new regulatory layer of P. aeruginosa quorum sensing and contribute to the growing understanding of the role regulatory RNAs play in bacterial physiology.
The purpose of this study was to investigate the association between gender and primary open-angle glaucoma (POAG) among African Americans and to assess demographic, systemic, and behavioral factors that may contribute to differences between genders. The Primary Open-Angle African American Glaucoma Genetics (POAAGG) study had a case-control design and included African Americans 35 years and older, recruited from the greater Philadelphia, Pennsylvania. Diagnosis of POAG was based on evidence of both glaucomatous optic nerve damage and characteristic visual field loss. Demographic and behavioral information, history of systemic diseases and anthropometric measurements were obtained at study enrollment. Gender differences in risk of POAG were examined using multivariate logistic regression. A total of 2,290 POAG cases and 2,538 controls were included in the study. The percentage of men among cases was higher than among controls (38.6% vs 30.3%, P<0.001). The subjects’ mean age at enrollment was significantly higher for cases compared to controls (70.2±11.3 vs. 61.6±11.8 years, P<0.003). Cases had lower rates of diabetes (40% vs. 46%, P<0.001), higher rates of systemic hypertension (80% vs. 72%, P<0.001), and lower body mass index (BMI) (29.7±6.7 vs. 31.9±7.4, P<0.001) than controls. In the final multivariable model, male gender was significantly associated with POAG risk (OR, 1.64; 95% CI, 1.44–1.87; P<0.001), after adjusting for age, systemic hypertension, diabetes, and BMI. Within the POAAGG study, men were at higher risk of having POAG than women. Pending genetic results from this study will be used to better understand the underlying genetic variations that may account for these differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.