Conventional tillage and mineral fertilization (CTMF) jeopardize soil health in conventional vegetable production systems. Using a field experiment established in Uruguay in 2012, we aimed to compare the soil restoration potential of organic fertilization (compost, poultry manure) combined with conventional tillage and cover crop incorporated into the soil (CTOF) or with reduced tillage and the use of cover crop as mulch (RTOF). In 2017 table beet was cultivated under CTMF, CTOF and RTOF, and yields, soil aggregate composition and nutrients, as well as soil and table beet rhizosphere microbiota (here: bacteria and archaea) were evaluated. Microbiota was studied by high-throughput sequencing of 16S rRNA gene fragments amplified from total community DNA. RTOF exhibited higher soil aggregation, soil organic C, nutrient availability and microbial alpha-diversity than CTMF, and became more similar to an adjacent natural undisturbed site. The soil microbiota was strongly shaped by the fertilization source which was conveyed to the rhizosphere and resulted in differentially abundant taxa. However, 229 amplicon sequencing variants were found to form the core table beet rhizosphere microbiota shared among managements. In conclusion, our study shows that after only five years of implementation, RTOF improves soil health under intensive vegetable farming systems.
Phosphorus deficiency can be a major limitation to legume growth when plant nitrogen nutrition depends on symbiotic nitrogen fixation. One possible approach to overcome this constraint is the selection of plant and rhizobial genotypes capable of metabolizing complex forms of phosphorus in the nodules. The aim of this research was to study the rhizobial phytase transcript abundance in nodules of two soybean cultivars (Glycine max (L.) Merr.) grown under two different phosphorus conditions in hydroaeroponic conditions. An in situ RT-PCR of a rhizobial phytase was performed in microtome sections of soybean nodules of two cultivars growing under phosphorus sufficiency vs. phosphorus deficiency. The results showed that the plant cultivar may influence the level of transcript abundance of the bacterial phytase and in consequence affect the phosphorus use efficiency of nitrogen-dependent Bradyrhizobium spp.-soybean symbioses. Thus, the selection of a good combination of plant and rhizobial genotypes should be a priority when breeding for phosphorus deficiency is performed.
Ten heterocyst cyanobacteria isolated from a temperate ricefield in Uruguay were characterized using a polyphasic approach. Based on major phenotypic features, the isolates were divided into two different morphotypes within the Order Nostocales, filamentous without true branching. The isolates were also phylogenetically evaluated by their 16S rRNA and hetR gene sequences. Although the morphological classification of cyanobacteria has not always been supported by the analysis of the 16S rRNA gene, in this case the morphological identification agreed with the 16S rRNA gene phylogenetic analysis and the ten isolates were ascribed at the genus level to Nostoc or Calothrix. Four isolates were identified at species level. As these cyanobacteria were intended to be used as biofertilizer for rice, several physiological parameters were studied. Growth rates, nitrogenase, nitrate reductase and glutamate synthase activities were evaluated. This information will be valuable to select strains to be used as inoculant for ricefields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.