Enzymatic hydrolysis of native collagen and fibrinogen was carried out under comparable conditions at room temperature. The molecular weight parameters of proteins before and after hydrolysis by thrombin were monitored by gel-penetrating chromatography (GPC). An analysis of the experiment results shows that the molecular weight parameters of the initial fibrinogen (Fn) and cod collagen (CC) are very similar. High molecular CC decays within the first minute, forming two low molecular fractions. The main part (~80%) falls on the fraction with a value of Mw less than 10 kDa. The initial high molecular fraction of Fn with Mw ~320–340 kDa is not completely hydrolyzed even after three days of control. The presence of low molecular fractions with Mw ~17 and Mw ~10 kDa in the solution slightly increases within an hour and noticeably increases for three days. The destruction of macromolecules of high molecular collagen to hydrolysis products appears almost completely within the first minute mainly to the polymer with Mw ~10 kDa, and enzymatic hydrolysis of fibrinogen proceeds slower than that of collagen, but also mainly to the polymer with Mw ~10 kDa. Comparative photos of the surfaces of native collagen, fibrinogen and the scaffold based on them were obtained.
Graft gelatin and poly(methyl methacrylate) copolymers were synthesized in the presence of the tributylborane—2,5-di-tert-butyl-p-benzoquinone (2,5-DTBQ) system. The molecular weight parameters and morphology of the polymer indicate that it has a cross-linked structure. Obtained data confirm the simultaneous formation of a copolymer in two ways: “grafting from” and “grafting to”. It leads to the cross-linked structure of a copolymer. This structure was not obtained for copolymers synthesized in the presence of other initiating systems: azobisisobutyronitrile; tributylborane; azobisisobutyronitrile and tributylborane; azobisisobutyronitrile, tributylborane, and 2,5-di-tert-butyl-p-benzoquinone. In these cases, the possibility of the formation of the copolymer, simultaneously in two ways, was excluded. Graft gelatin and poly(methyl methacrylate) copolymers synthesized in the presence of the tributylborane—2,5-di-tert-butyl-p-benzoquinone system are promising in terms of their use in scaffold technologies due to the three-dimensional mesh structure, providing a high regenerative potential of materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.