Silks have been proposed as potential scaffold materials for tissue engineering, mainly because of their physical properties. They are stable at physiological temperatures, flexible and resist tensile and compressive forces. Bombyx mori (silkworm) cocoon silk has been used as a suture material for over a century, and has proved to be biocompatible once the immunogenic sericin coating is removed. Spider silks have a similar structure to silkworm silk but do not have a sericin coating. This paper provides a general overview on the use of silk protein in biomaterials, with a focus on skeletal tissue engineering.
Several adult stem cell types have been found in different parts of the eye, including the corneal epithelium, conjunctiva, and retina. In addition to these, there have been accumulating evidence that some stem-like cells reside in the transition area between the peripheral corneal endothelium (CE) and the anterior nonfiltering portion of the trabecular meshwork (TM), which is known as the Schwalbe's Ring region. These stem/progenitor cells may supply new cells for the CE and TM. In fact, the CE and TM share certain similarities in terms of their embryonic origin and proliferative capacity in vivo. In this paper, we discuss the putative stem cell source which has the potential for replacement of lost and nonfunctional cells in CE diseases and glaucoma. The future development of personalized stem cell therapies for the CE and TM may reduce the requirement of corneal grafts and surgical treatments in glaucoma.
Topical and systemic administration of drugs to the eye is highly inefficient and there is a need for controlled, sustained release, particularly for conditions that affect the posterior segment. Various nonimplantable and implantable drug delivery devices have been developed. Colloidal carriers may allow targeted drug delivery and afford protection to substances that are sensitive to degradation, particularly RNA/DNA-based treatments. Gene therapy and cell transplantation are also starting to emerge as alternatives to conventional pharmacological treatment. There is the potential to use existing ocular devices to deliver drugs. In order to exploit this opportunity, modifications to drugs and devices, along with clarification of the appropriate drug dose, must be undertaken. This review will describe some of the treatment options for ocular disease and barriers to drug delivery, discuss the design of existing drug delivery systems and highlight some of the research into combining drug delivery with existing ocular medical devices.
ePTFE can be surface-modified to support an intact functional monolayer of healthy RPE cells with normal morphology and the ability to perform RPE-specific functions. Following further investigation ePTFE may be considered for use in transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.