Data quality is a difficult notion to define precisely, and different communities have different views and understandings of the subject. This causes confusion, a lack of harmonization of data across communities and omission of vital quality information. For some existing data infrastructures, data quality standards cannot address the problem adequately and cannot fulfil all user needs or cover all concepts of data quality. In this study, we discuss some philosophical issues on data quality. We identify actual user needs on data quality, review existing standards and specifications on data quality, and propose an integrated model for data quality in the field of Earth observation (EO). We also propose a practical mechanism for applying the integrated quality information model to a large number of datasets through metadata inheritance. While our data quality management approach is in the domain of EO, we believe that the ideas and methodologies for data quality management can be applied to wider domains and disciplines to facilitate quality-enabled scientific research.
<p class="0abstractCxSpFirst">Mental health presents a growing public health concern worldwide with mental illnesses affecting people’s quality of life and causing an economic impact on societies. The rapidly increasing demand for mental healthcare is calling for new ways of disseminating mental health knowledge and for supporting people with mental health illnesses. As an alternative to traditional mental health therapies and treatments, mental health self-assessment and self-management tools become widely available to the public. While such tools can potentially offer more timely personalised support, individuals seeking help are faced with the challenge of making an appropriate choice from an exhaustive number of online tools, mobile apps, and support programs.</p><p class="0abstractCxSpLast">In this article, we present myGRaCE – a self-assessment and self-management mental health tool made accessible to users via Augmented Reality technologies. The advantage of the system is that it provides a direct pathway to relevant and reliable mental health resources and offers a positive incentive and interventions for at-risk users. The system offers service users the resources to gain a better understanding of their mental state and increase control of their mental health conditions via self-monitoring and self-help.</p>
Ageing represents a major risk factor for many pathologies that limit human lifespan, including cardiovascular diseases. Biological ageing is a good biomarker to assess early individual risk for CVD. However, finding good measurements of biological ageing is an ongoing quest. This study aims to assess the use retinal microvascular function, separate or in combination with telomere length, as a predictor for age and systemic blood pressure in individuals with low cardiovascular risk. In all, 123 healthy participants with low cardiovascular risk were recruited and divided into three groups: group 1 (less than 30 years old), group 2 (31–50 years old) and group 3 (over 50 years old). Relative telomere length (RTL), parameters of retinal microvascular function, CVD circulatory markers and blood pressure (BP) were measured in all individuals. Symbolic regression- analysis was used to infer chronological age and systemic BP measurements using either RTL or a combination of RTL and parameters for retinal microvascular function. RTL decreased significantly with age (p = 0.010). There were also age-related differences between the study groups in retinal arterial time to maximum dilation (p = 0.005), maximum constriction (p = 0.007) and maximum constriction percentage (p = 0.010). In the youngest participants, the error between predicted versus actual values for the chronological age were smallest in the case of using both retinal vascular functions only (p = 0.039) or the combination of this parameter with RTL (p = 0.0045). Systolic BP was better predicted by RTL also only in younger individuals (p = 0.043). The assessment of retinal arterial vascular function is a better predictor than RTL for non-modifiable variables such as age, and only in younger individuals. In the same age group, RTL is better than microvascular function when inferring modifiable risk factors for CVDs. In older individuals, the accumulation of physiological and structural biological changes makes such predictions unreliable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.