We describe a one-step method for creating thousands of isolated pico- to microliter-sized droplets with defined geometry and volume. Arrays of droplets are instantly formed as liquid moves along a superhydrophilic-superhydrophobic patterned surface. Bioactive molecules, nonadherent cells, or microorganisms can be trapped in the fully isolated microdroplets for high-throughput screening, or in hydrogel micropads for screening in 3D microenvironments.
Understanding of stem cell−surface interactions and, in particular, long-term maintenance of stem cell pluripotency on well-defined synthetic surfaces is crucial for fundamental research and biomedical applications of stem cells. Here, we show that synthetic surfaces possessing hierarchical micro-nano roughness (MN-surfaces) promote long-term self-renewal (>3 weeks) of mouse embryonic stem cells (mESCs) as monitored by the expression levels of the pluripotency markers octamer-binding transcription factor 4 (Oct4), Nanog, and alkaline phosphatase. On the contrary, culturing of mESCs on either smooth (S-) or nanorough polymer surfaces (N-surfaces) leads to their fast differentiation. Moreover, we show that regular passaging of mESCs on the hierarchical MN-polymer surface leads to an increased homogeneity and percentage of Oct4-positive stem cell colonies as compared to mESCs grown on fibroblast feeder cells. Immunostaining revealed the absence of focal adhesion markers on all polymer substrates studied. However, only the MN-surfaces elicited the formation of actin-positive cell protrusions, indicating an alternative anchorage mechanism involved in the maintenance of mESC stemness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.