Organ culture studies involving whole explants of periosteum have been useful for studying chondrogenesis, but to date the standard culture model for these explants has required the addition of fetal bovine serum to the media. Numerous investigators have succeeded in culturing chondrocytes and embryonic cells in serum-free conditions but there have been no studies focused on achieving a defined, serum-free media for culturing periosteal explants. The purpose of the present investigation was to determine if whole periosteal explants can be grown and produce cartilage in serum-free conditions, and to define the minimum media supplements that would be conducive to chondrogenesis. 321 periosteal explants were obtained from the medial proximal tibiae of 31 two month-old NZ white rabbits and cultured using a published agarose suspension organ culture model and DMEM for six weeks. The explants were cultured with and without fetal bovine serum or bovine serum albumin and exposed to transforming growth factor beta alone, a combination of growth factors we call ChondroMix (10 ng/ml transforming growth factor beta, 50 ng/ml basic fibroblast growth factor, and 5 pg/ml growth hormone), and/or ITS+ (2.08 pg/ml each of insulin, transferrin, and selenious acid, plus 1.78 pg/ml linoleic acid and 0.42 mg/ml BSA). Maximal chondrogenic stimulation in this study was observed with the combination of ChondroMix and ITS+. However, the minimal requirement to match or exceed the level of chondrogenic stimulation seen in the standard model (TGF-1 in 100/0 FBS) was achieved simply by the addition of 2.0 pg/ml insulin in 0.10/0 BSA-containing medium (p < 0.05). Therefore, based on our results, it would be reasonable to assume that insulin is the component in ITS+ responsible for the observed increase in total cartilage growth. Lower concentrations of insulin were not effective, suggesting that the observed effect of insulin requires activation of the IGF-1 receptor.
Articular cartilage has a limited ability to repair itself. Periosteal grafts have chondrogenic potential and are used clinically to repair defects in articular cartilage. An organ culture model system for in vitro rabbit periosteal chondrogenesis has been established to study the molecular events of periosteal chondrogenesis in vitro. In this model, bone morphogenetic protein-2 (BMPZ) mRNA expression was found to be upregulated in the first 12 h. BMPs usually transduce their signals through a receptor complex that includes type 11 and either type IA or type IB BMP receptors. Receptors 1A and IB play distinct roles during limb development. We have examined the temporal expression patterns for the mRNAs of these receptors using our experimental model. The mRNA expression patterns of these three BMP receptors differed from one another in periosteal explants during chondrogenesis. When these explants were cultured under chondrogenic conditions (agarose suspension with TGF-01 added to the media for the first 2 days), the expression of BMPRII mRNA and that of BMPRIA mRNA varied only slightly and persisted over a long time. In contrast, the expression of BMPRIB mRNAwas upregulated within 12 h, peaked at day 5, and fell to a level that was barely detected beyond day 21. Moreover, the expression of BMPRIB mRNA preceded that of collagen type IIB mRNAs, a marker for matrixdepositing chondrocytes. These data support a role for coordinate expression of BMP2 and its receptors early during periosteal chondrogenesis.
Objective: Periosteum is involved in bone growth and fracture healing and has been used as a cell source and tissue graft for tissue engineering and orthopedic reconstruction including joint resurfacing. Periosteum can be induced by transforming growth factor beta (TGF-β) or insulin-like growth factor-I (IGF-I) alone or in combination to form cartilage. However, little is known about the interaction between IGF and TGF-β signaling during periosteal chondrogenesis. The purpose of this study was to determine the effect of TGF-β1 on IGF binding protein-4 (IGFBP-4) and the IGFBP-4 protease pregnancy-associated plasma protein-A (PAPP-A) expression in cultured periosteal explants. Design: Periosteal explants from rabbits were cultured with or without TGF-β1. IGFBP-4 and PAPP-A mRNA levels were determined by real-time quantitative PCR. Conditioned medium was analyzed for IGFBP-4 and PAPP-A protein levels and IGFBP-4 protease activity. Results: TGF-β1-treated explants contained lower IGFBP-4 mRNA levels throughout the culture period with a maximum reduction of 70 % on day 5 of culture. Lower levels of IGFBP-4 protein were also detected in the conditioned medium from TGF-β1-treated explants. PAPP-A mRNA levels were increased 1.6 fold, PAPP-A protein levels were increased 3 fold, and IGFBP-4 protease activity was increased 8.5 fold between 7 and 10 days of culture (the onset of cartilage formation in this model) in conditioned medium from TGF-β1-treated explants. Conclusions: This study demonstrates that TGF-β1 modulates the expression of IGFBP-4 and PAPP-A in cultured periosteal explants.
Induction of chondrogenesis and maintenance of the chondrocyte phenotype are critical events for antologous periosteal transplantation, which is a viable approach for cartilage repair. Cartilage-derived retinoic acid-sensitive protein (CD-RAP) is a recently discovered protein that is mainly produced in cartilage. During development, CD-RAP expression starts at the beginning of chondrogenesis and continues throughout cartilage maturation. In order to investigate the involvement of CD-RAP during periosteal chondrogenesis we have determined the nucleotide sequence of the rabbit CD-RAP mRNA and utilized this information to evaluate the temporal and spatial expression pattern of CD-RAP at the mRNA level during chondrogenesis. When the periosteal explants were cultured under chondrogenic conditions, the expression of CD-RAP was induced, as shown by a 40-fold increase in CD-RAP mRNA between days 7 and 10. The temporal expression pattern of CD-RAP closely mimicked that of collagen type IIB mRNA. Also, the CD-RAP mRNA was localized to the matrix forming chondrocytes in the cambium layer of the periosteum by in situ hybridization as indicated by colocalization with collagen type TI mRNA and positive safranin 0 staining. These data suggest a regulatory role of CD-RAP in periosteal chondrogenesis, which is potentially important for both cartilage repair and fracture healing via callus formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.