The results of this study demonstrate that IGF-1 and TGF-beta1 can act in combination to regulate proliferation and differentiation of periosteal mesenchymal cells during chondrogenesis.
Here we present the development of a visual evaluation system for routine assessment of in vitro-engineered cartilaginous tissue. Neocartilage was produced by culturing human articular chondrocytes in pellet culture systems or in a scaffold-free bioreactor system. All engineered tissues were embedded in paraffin and were sectioned and stained with Safranin O-fast green. The evaluation of each sample was broken into 3 categories (uniformity and intensity of Safranin O stain, distance between cells/amount of matrix produced, and cell morphology), and each category had 4 components with a score ranging from 0 to 3. Three observers evaluated each sample, and the new system was independently tested against an objective computer-based histomorphometry system. Pellets were also assessed biochemically for glycosaminoglycan (GAG) content. Pellet histology scores correlated significantly with GAG contents and were in agreement with the computer-based histomorphometry system. This system allows a valid and rapid assessment of in vitro-generated cartilaginous tissue that has a relevant association with objective parameters indicative of cartilage quality.
These findings show that the chondrocyte precursors are located in the cambium layer of periosteum. Preservation of this layer is essential for chondrogenesis. As neocartilage growth is appositional, away from the fibrous layer, it can be expected that the new cartilage deposited in and adjacent to a periosteal graft would be expected to be located on the side of the cambium layer, rather than on the side of the fibrous layer of the graft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.