This review discusses the role of microparticles in inflammation, coagulation, vascular function, and most importantly, their physiological and pathological functions in sepsis. Microparticles are proinflammatory, procoagulant membrane vesicles released from various cell types. They are detectable in normal individuals and basal levels correlate with a balance between cell proliferation, stimulation, and destruction. Haemostatic imbalance leads to various pathological states of inflammation and thrombosis including cardiovascular disease and sepsis, where circulating microparticles display both an increase in number and phenotypic change. Microparticles, mainly of platelet origin enable both local and disseminated amplification of the haemostatic response to endothelial injury through exposure of phosphatidylserine, tissue factor, and coagulation factor binding sites. Surface expression of membrane antigens by microparticles facilitates cytoadhesion, chemotaxis, and cytokine secretion to drive a proinflammatory response. Microparticles behave as vectors in the transcellular exchange of biological information and are important regulators of endothelial function and angiogenesis. The extent to which circulating microparticles contribute to the pathogenesis of sepsis and disseminated intravascular coagulation is currently unknown. Microparticles may in fact be beneficial in early sepsis, given that activated protein C bound to endothelium-derived microparticles retains anticoagulant activity, and increased circulating microparticles are protective against vascular hyporeactivity. Elevated levels of microparticles in early sepsis may therefore compensate for the host's systemic inflammatory response. Importantly, in vivo, septic microparticles induce deleterious changes in the expression of enzyme systems related to inflammation and oxidative stress, thus they may represent important contributors to multi-organ failure in septic shock.
We have shown that in addition to melatonin, other structurally related indoleamine compounds have effects on NFκB activation and cytokine expression, GSH, mitochondrial membrane potential, and metabolic activity in endothelial cells cultured under conditions mimicking sepsis. Further work is needed to determine whether these compounds represent therapeutic approaches for disrupting the oxidative stress-inflammatory response signalling pathway in sepsis.
ObjectivesPodcasts have the potential to facilitate communication about palliative care with researchers, policymakers and the public. Some podcasts about palliative care are available; however, this is not reflected in the academic literature. Further study is needed to evaluate the utility of podcasts to facilitate knowledge-transfer about subjects related to palliative care. The aims of this paper are to (1) describe the development of a palliative care podcast according to international recommendations for podcast quality and (2) conduct an analysis of podcast listenership over a 14-month period.MethodsThe podcast was designed according to internationally agreed quality indicators for medical education podcasts. The podcast was published on SoundCloud and was promoted via social media. Data were analysed for frequency of plays and geographical location between January 2015 and February 2016.Results20 podcasts were developed which were listened to 3036 times (an average of 217 monthly plays). The Rich Site Summary feed was the most popular way to access the podcast (n=1937; 64%). The mean duration of each podcast was 10 min (range 3–21 min). The podcast was listened to in 68 different countries and was most popular in English-speaking areas, of which the USA (n=1372, 45.2%), UK (n=661, 21.8%) and Canada (n=221, 7.3%) were most common.ConclusionsA palliative care podcast is a method to facilitate palliative care discussion with global audience. Podcasts offer the potential to develop educational content and promote research dissemination. Future work should focus on content development, quality metrics and impact analysis, as this form of digital communication is likely to increase and engage wider society.
BackgroundThe Neuberger review made a number of recommendations to improve end of life care, including research into the biology of dying. An important aspect of the biology of dying is the identification of biomarkers as indices of disease processes. Biomarkers have the potential to inform the current, limited understanding of the dying process and assist clinicians in recognising dying, in particular how to distinguish dying from reversible acute deterioration.ObjectivesTo critically appraise the literature on biological factors that may be used as prognostic indicators in advanced cancer patients and to identify candidate biomarkers of the dying process that can be measured serially in cancer patients’ bodily fluids.MethodsA systematically structured review was conducted using three electronic databases. A hand search of six peer-reviewed journals and conference abstracts was also conducted. Studies reporting prognostic biomarkers in cancer patients with a median survival of ≤90 days and post-mortem studies were included. Final levels of evidence and recommendations were made using the Evidence Based Medicine modified GRADE system.Results30 articles were included. Seven prognostic biological factors demonstrated Grade A evidence (lymphocyte count, white blood cell count, serum C-reactive protein, albumin, sodium, urea and alkaline phosphatase). An additional eleven prognostic factors were identified with Grade B evidence (platelet count, international normalised ratio, serum vitamin B12, prealbumin, bilirubin, cholesterol, aspartate aminotransferase, alanine transaminase, lactate dehydrogenase, pseudocholinesterase and urate). A number of biomarkers were specifically identified in the last two weeks of life but limitations exist. No post-mortem studies met the inclusion criteria.ConclusionThe biology of dying is an important area for future research, with the evidence focused on signs, symptoms and prognostic factors. This review identifies a number of common themes shared amongst advanced cancer patients and highlights candidate biomarkers which may be indicative of a common biological process to dying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.