A side-by-side comparison of softwood (pine) vs hardwood (eucalyptus) pretreatment using 3 protic, 3 aprotic, and 3 choline-derived ionic liquids (ILs) is proposed. While the protic ionic liquid 2-hydroxyethylammonium formate leads to alkali lignin dissolution at 30 °C after 1 h, the lack of interactions with the whole-cell wall limits the biomass disruption. On the contrary, the protic ionic liquid 1-methylimidazolium chloride produces a catalytic effect that extracts almost all of the hemicelluloses, and partially the lignin. Remarkable digestibilities are obtained with choline acetate ([Ch][OAc]) in eucalyptus (69%), while in pine, protic, and choline-derived ILs tested do not appear to be real "greener" alternatives to conventional ILs such as 1-ethyl-3methylimidazolium acetate (the highest digestibility, 84%). Solid morphology revealed a smoother surface in pine pretreated with [Mim][Cl], and confocal fluorescence microscopy was used to distinguish surface holocellulose and lignin, highlighting differences in the accessibility of hardwood vs softwood due to the presence of surface lignin. Two-dimensional nuclear magnetic resonance spectroscopy of saccharified samples pretreated with [Ch][OAc] showed the presence of groups derived from acetate. Finally, thermogravimetric analysis and spectroscopy techniques reveal the difficulties in recovering the ionic liquid and conclude a work that describes the strengths and weaknesses of the ILs and biomasses studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.