The hepatotoxin cylindrospermopsin (CYN) is produced by freshwater cyanobacteria becoming an emerging threat for human health. Methods for the rapid determination of CYN in environmental samples are needed. Conventional analytical pyrolysis (Py-GC/MS) and thermally-assisted hydrolysis and methylation (TCh-GC/MS) were used to study a CYN standard, two Aphanizomenon ovalisporum cultures (CYN+) and one culture of Cylindrospermopsis raciborskii (CYN-). A micro-furnace pyrolyzer was used directly attached to a GC/MS system fitted with a 30 m × 250 μm × 0.25 μm film thickness column (14% cyanopropyl phenyl, 86% dimethyl polysiloxane pahase composition). Oven temperature was held at 50 °C for 1 min and increased to 100 °C at 30 °C min(-1), from 100 °C to 300 °C at 10 °C min(-1), and stabilized at 300 °C for 10 min using helium (1 mL min(-1)) as carrier gas. Pyrolysis at 500 °C yield over 70 compounds with 20 specific for CYN+ samples. Two peaks containing a diagnostic fragment (m/z 194) were found at 25.0 and 28.9 min only in CYN+ samples. Fewer peaks with limited diagnostic value were released after TCh-GC/MS, including breakdown products and TMAH adducts. A compound was detected that may correspond to the CYN molecule (MW 415 Da) thermoevaporation product after the loss of SO3 (MW 80 Da). This TCh-GC/MS peak (m/z 336) together with the fragments obtained by conventional Py-GC/MS (m/z 194) are diagnostic ions with potential use for the direct detection of CYN toxin in environmental samples at last with an estimated 5 ppm detection threshold.
The cyanobacterial toxin Cylindrospermopsin (CYN), a potent protein synthesis inhibitor, is increasingly being found in freshwater bodies infested by cyanobacterial blooms worldwide. Moreover, it has been reported to be implicated in human intoxications and animal mortality. Recently, the alteration of the activity and gene expression of some glutathione related enzymes in tilapias (Oreochromis niloticus) exposed to a single dose of CYN has been reported. However, little is known about the effects induced by repeated doses of this toxin in tilapias exposed by immersion and the potential reversion of these biochemical alterations after two different depuration periods (3 or 7 days). In the present study, tilapias were exposed by immersion to repeated doses of a CYN-containing culture of Aphanizomenon ovalisporum during 14 days, and then were subjected to depuration periods (3 or 7 days) in clean water in order to examine the potential reversion of the effects observed. The activity and relative mRNA expression by real-time polymerase chain reaction (PCR) of the antioxidant enzymes glutathione peroxidase (GPx) and soluble glutathione-S-transferases (sGST), and also the sGST protein abundance by Western blot analysis were evaluated in liver and kidney of fish. Results showed significant alterations in most of the parameters evaluated and their recovery after 3 days (GPx activity, sGST relative abundance) or 7 days (GPx gene expression, sGST activity). These findings not only confirm the oxidative stress effects produced in fish by cyanobacterial cells containing CYN, but also show the effectiveness of depuration processes in mitigating the CYN-containing culture toxic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.