In order to encourage the survival of both captive and wild populations of bonefish (Albula vulpes), a deeper understanding of the species' early developmental characteristics is necessary. During ontogenesis, bonefish utilize lipids as a source of energy before the start of exogenous feeding. The goal of this study is to gain insight into the energetic needs of bonefish leptocephalus larvae in the post‐hatch larval stage. Broodstock were collected in the wild and hormone induced. Spawning yielded eggs that were fertilized and were then incubated until hatching. Larval development was monitored throughout the duration of the trial until all larvae perished. Samples of larval tissue were taken to the lab for lipid analysis and composition was compared at different developmental stages. Larval lipid composition was significantly different across sample groups showing a change in lipid content related to development. After hatching, larvae gradually depleted wax esters‐sterol ester (WE‐SE) reserves over a period of 4 days, while simultaneously increasing hydrocarbon (HC). The role of WE‐SE is seemingly tied to both buoyancy and energy reserves due to its high abundance immediately post‐hatch and selective catabolism. As larvae weaned off of the nutrition provided by the yolk, exogenous feeding began to diversify lipid composition and overall lipid reserves were depleted. Future directions included the development of optimal larval feeds based on this analysis in order to gain more insight into the nutritional needs and requirements during the critical leptocephalus stages.
The study of post-transcriptional regulation is constrained by the technical limitations associated with both transient and stable transfection of chimeric reporter plasmids examining the activity of 3′-UTR cis-acting elements. We report the adaptation of a commercially available system that enables consistent stable integration of chimeric reporter cDNA into a single genomic site in which transcription is induced by tetracycline. Using this system, we demonstrate the tight control afforded by this system and its suitability in mapping the regulatory function of defined cis-acting elements in the human TNF 3′-UTR, as well as the distinct effects of serum starvation on transiently transfected and stably integrated chimeric reporter genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.