We present an innovative method to cover pure magnesium with protein monolayers by utilizing the OH termination of the oxide surface and silane coupling chemistry. The protein of interest was albumin. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS) were used to monitor the success of the treatment. The attachment of proteins via linker groups yielded smoother and more homogeneous surfaces than coatings produced by steeping magnesium in protein solution. A positive effect on the corrosion behavior of pure magnesium was also observed.
The influence of bovine serum albumin (BSA) on the electrochemical behaviour of pure Mg and Fe was studied in simulated body fluid (SBF), in view of the possible application of these materials as biodegradable metals. Results indicate a different trend for the BSA-effect on corrosion for the two metals: for Mg, a strong corrosion-inhibiting effect is observed in the presence of BSA in solution, especially for short-term exposure, whereas for Fe only a slight acceleration of corrosion is caused by the addition of BSA to the solution. For both metals, the protein-effect on the electrochemical behaviour shows a complex time-dependence. Surface analysis indicates that stronger BSA adsorption takes place on Mg than on Fe. Moreover, adsorption experiments with BSA and a second protein (lysozyme) were conducted. The results are discussed in view of electrostatic interactions between differently charged metal oxide/hydroxide surfaces and proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.