Can a machine learn to perceive emotions as evoked by an artwork? Here we propose an emotion categorization system, trained by ground truth from psychology studies. The training data contains emotional valences scored by human subjects on the International Affective Picture System (IAPS), a standard emotion evoking image set in psychology. Our approach is based on the assessment of local image statistics which are learned per emotional category using support vector machines. We show results for our system on the IAPS dataset, and for a collection of masterpieces. Although the results are preliminary, they demonstrate the potential of machines to elicit realistic emotions when considering masterpieces.
When artists express their feelings through the artworks they create, it is believed that the resulting works transform into objects with “emotions” capable of conveying the artists' mood to the audience. There is little to no dispute about this belief: Regardless of the artwork, genre, time, and origin of creation, people from different backgrounds are able to read the emotional messages. This holds true even for the most abstract paintings. Could this idea be applied to machines as well? Can machines learn what makes a work of art “emotional”? In this work, we employ a state-of-the-art recognition system to learn which statistical patterns are associated with positive and negative emotions on two different datasets that comprise professional and amateur abstract artworks. Moreover, we analyze and compare two different annotation methods in order to establish the ground truth of positive and negative emotions in abstract art. Additionally, we use computer vision techniques to quantify which parts of a painting evoke positive and negative emotions. We also demonstrate how the quantification of evidence for positive and negative emotions can be used to predict which parts of a painting people prefer to focus on. This method opens new opportunities of research on why a specific painting is perceived as emotional at global and local scales.
Most artworks are explicitly created to evoke a strong emotional response. During the centuries there were several art movements which employed different techniques to achieve emotional expressions conveyed by artworks. Yet people were always consistently able to read the emotional messages even from the most abstract paintings. Can a machine learn what makes an artwork emotional? In this work, we consider a set of 500 abstract paintings from Museum of Modern and Contemporary Art of Trento and Rovereto (MART), where each painting was scored as carrying a positive or negative response on a Likert scale of 1-7. We employ a state-of-theart recognition system to learn which statistical patterns are associated with positive and negative emotions. Additionally, we dissect the classification machinery to determine which parts of an image evokes what emotions. This opens new opportunities to research why a specific painting is perceived as emotional. We also demonstrate how quantification of evidence for positive and negative emotions can be used to predict the way in which people observe paintings.
State-of-the-art bottom-up saliency models often assign high saliency values at or near high-contrast edges, whereas people tend to look within the regions delineated by those edges, namely the objects. To resolve this inconsistency, in this work we estimate saliency at the level of coherent image regions. According to object-based attention theory, the human brain groups similar pixels into coherent regions, which are called proto-objects. The saliency of these proto-objects is estimated and incorporated together. As usual, attention is given to the most salient image regions. In this paper we employ state-of-the-art computer vision techniques to implement a proto-object-based model for visual attention. Particularly, a hierarchical image segmentation algorithm is used to extract proto-objects. The two most powerful ways to estimate saliency, rarity-based and contrast-based saliency, are generalized to assess the saliency at the proto-object level. The rarity-based saliency assesses if the proto-object contains rare or outstanding details. The contrast-based saliency estimates how much the proto-object differs from the surroundings. However, not all image regions with high contrast to the surroundings attract human attention. We take this into account by distinguishing between external and internal contrast-based saliency. Where the external contrast-based saliency estimates the difference between the proto-object and the rest of the image, the internal contrast-based saliency estimates the complexity of the proto-object itself. We evaluate the performance of the proposed method and its components on two challenging eye-fixation datasets (Judd, Ehinger, Durand, & Torralba, 2009; Subramanian, Katti, Sebe, Kankanhalli, & Chua, 2010). The results show the importance of rarity-based and both external and internal contrast-based saliency in fixation prediction. Moreover, the comparison with state-of-the-art computational models for visual saliency demonstrates the advantage of proto-objects as units of analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.