¤ ¤Purpose: To determine the effect of curvature on the magnitude and direction of displacement forces acting on aortic endografts in 3-dimensional (3D) computational models.Method: A 3D computer model was constructed based on magnetic resonance angiography data from a patient with an infrarenal aortic aneurysm. Computational fluid dynamics tools were used to simulate realistic flow and pressure conditions of the patient. An aortic endograft was deployed in the model, and the displacement forces acting on the endograft were calculated and expressed in Newtons (N). Additional models were created to determine the effects of reducing endograft curvature, neck angulation, and iliac angulation on displacement forces. Results: The aortic endograft had a curved configuration as a result of the patient's anatomy, with curvature in the anterolateral direction. Total displacement force acting on the endograft was 5.0 N, with 28% of the force in a downward (caudal) direction and 72% of the force in a sideways (anterolateral) direction. Elimination of endograft curvature (planar graft configuration) reduced total displacement force to 0.8 N, with the largest component of force (70%) acting in the sideways direction. Straightening the aortic neck in the curved endograft configuration reduced the total force acting on the endograft to 4.2 N, with a reduction of the sideways component to 55% of the total force. Straightening the iliac limbs of the endograft reduced the total force acting on the endograft to 2.1 N but increased the sideways component to 91% of the total force. Conclusion: The largest component of the force acting on the aortic endograft is in the sideways direction, with respect to the blood flow, rather than in the downward (caudal) direction as is commonly assumed. Increased curvature of the aortic endograft increases the magnitude of the sideways displacement force. The degree of angulation of the proximal and distal ends of the endograft influence the magnitude and direction of displacement force. These factors may have a significant influence on the propensity of endografts to migrate in vivo.
The orientation of the DF varies depending on curvature and location of the endograft, but in all instances, it is in the cranial rather than caudal direction on axial imaging. This is counter to the intuitive notion that displacement forces act in the downward direction of blood flow. Therefore, we postulate that migration of thoracic endografts may be different from abdominal endografts since it may involve upward rather than downward movement of the graft. Computational methods can enhance the understanding of the magnitude and orientation of the loads experienced in vivo by thoracic aortic endografts and therefore improve their design and performance.
Objective Endograft migration is usually described as a downward displacement of the endograft with respect to the renal arteries. However, change in endograft position is actually a complex process in three dimensional space. Currently, there are no established techniques to define such positional changes over time. The purpose of this study is to determine whether the direction of aortic endograft movement as observed in follow-up CT scans is related to the directional displacement force acting on the endograft. Methods We quantitated the 3D positional change over time of 5 abdominal endografts by determining the endograft centroid at baseline (post-operative scan) and on follow-up CT scans. The time interval between CT scans for the 5 patients ranged from 8 months to 8 years. We then used 3D image segmentation and computational fluid dynamics (CFD) techniques to quantitate the pulsatile displacement force (in Newtons [N]) acting on the endografts in the post-operative configurations. Finally, we calculated a correlation metric between the direction of the displacement force vector and the endograft movement by computing the cosine of the angle of these two vectors. Results The average 3D movement of the endograft centroid was 18 mm (range 9 mm to 29 mm) with greater movement in patients with longer follow-up times. In all cases, the movement of the endograft had significant components in all 3 spatial directions: Two of the endografts had the largest component of movement in the transverse direction, whereas 3 endografts had the largest component of movement in the axial direction. The magnitude and orientation of the endograft displacement force varied depending on aortic angulation and hemodynamic conditions. The average magnitude of displacement force for all endografts was 5.8 N (range 3.7 N to 9.5 N). The orientation of displacement force was in general perpendicular to the greatest curvature of the endograft. The average correlation metric, defined as the cosine of the angle between the displacement force and the endograft centroid movement, was 0.38 (range 0.08 to 0.66). Conclusions Computational methods applied to patient-specific post-operative image data can be used to quantitate three-dimensional displacement force and movement of endografts over time. It appears that endograft movement is related to the magnitude and direction of the displacement force acting on aortic endografts. These methods can be used to increase our understanding of clinical endograft migration.
BackgroundThe determination of left ventricular ejection fraction using cardiovascular magnetic resonance (CMR) requires a steady cardiac rhythm for electrocardiogram (ECG) gating and multiple breathholds to minimize respiratory motion artifacts, which often leads to scan times of several minutes. The need for gating and breathholding can be eliminated by employing real-time CMR methods such as through-time radial GRAPPA. The aim of this study is to compare left ventricular cardiac functional parameters obtained using current gold-standard breathhold ECG-gated functional scans with non-gated free-breathing real-time imaging using radial GRAPPA, and to determine whether scan time or the occurrence of artifacts are reduced when using this real-time approach.Methods63 patients were scanned on a 1.5T CMR scanner using both the standard cardiac functional examination with gating and breathholding and the real-time method. Total scan durations were noted. Through-time radial GRAPPA was employed to reconstruct images from the highly accelerated real-time data. The blood volume in the left ventricle was assessed to determine the end systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) for both methods, and images were rated for the presence of artifacts and quality of specific image features by two cardiac readers. Linear regression analysis, Bland-Altman plots and two-sided t-tests were performed to compare the quantitative parameters. A two-sample t-test was performed to compare the scan durations, and a two-sample test of proportion was used to analyze the presence of artifacts. For the reviewers´ ratings the Wilcoxon test for the equality of the scores’ distributions was employed.ResultsThe differences in EF, EDV, and ESV between the gold-standard and real-time methods were not statistically significant (p-values of 0.77, 0.82, and 0.97, respectively). Additionally, the scan time was significantly shorter for the real-time data collection (p<0.001) and fewer artifacts were reported in the real-time images (p<0.01). In the qualitative image analysis, reviewers marginally preferred the standard images although some features including cardiac motion were equivalently rated.ConclusionReal-time functional CMR with through-time radial GRAPPA performed without ECG-gating under free-breathing can be considered as an alternative to gold-standard breathhold cine imaging for the evaluation of ejection fraction in patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.