Electrical energy storage systems (EESSs) with high energy density and power density are essential for the effective miniaturization of future electronic devices. Among different EESSs available in the market, dielectric capacitors relying on swift electronic and ionic polarization-based mechanisms to store and deliver energy already demonstrate high power densities. However, different intrinsic and extrinsic contributions to energy dissipations prevent ceramic-based dielectric capacitors from reaching high recoverable energy density levels. Interestingly, relaxor ferroelectric-based dielectric capacitors, because of their low remnant polarization, show relatively high energy density and thus display great potential for applications requiring high energy density properties. Here, some of the main strategies to improve the energy density properties of perovskite lead-free relaxor systems are reviewed. This includes (i) chemical modification at different crystallographic sites, (ii) chemical additives that do not target lattice sites and (iii) novel processing approaches dedicated to bulk ceramics, thick and thin films, respectively. Recent advancements are summarized concerning the search for relaxor materials with superior energy density properties and the appropriate choice of both composition and processing route to match various needs in the application. Finally, future trends in computationally-aided materials design are presented.
Lead hafnate (PbHfO3) has attracted a lot of renewed interest due to its potential as antiferroelectric (AFE) material for energy storage. However, its room temperature (RT) energy-storage performance has not been well established and no reports on the energy-storage feature of its high-temperature intermediate phase (IM) are available. In this work, high-quality PbHfO3 ceramics were prepared via the solid-state synthesis route. Based on high-temperature X-ray diffraction data, the IM of PbHfO3 was found to be orthorhombic, Imma space group, with antiparallel alignment of Pb2+ ions along the [001]cubic directions. The polarization–electric field (P–E) relation of PbHfO3 is displayed at RT as well as in the temperature range of the IM. A typical AFE loop revealed an optimal recoverable energy-storage density (Wrec) of 2.7 J/cm3, which is 286% higher than the reported data with an efficiency (η) of 65% at 235 kV/cm at RT. A relatively high Wrec value of 0.7 J/cm3 was found at 190 °C with an η of 89% at 65 kV/cm. These results demonstrate that PbHfO3 is a prototypical AFE from RT up to 200 °C, making it a suitable material for energy-storage applications in a wide temperature range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.