Nucleation is important in processing of good quality diamond crystals and textured thin films by microwave plasma enhanced chemical vapor deposition (MPECVD) for applications in quantum devices and systems. Bias-enhanced nucleation (BEN) is one approach for diamond nucleation in situ during MPECVD. However, the mechanism of diamond nucleation by BEN is not well understood. This paper describes results on the nucleation of diamond within a carbon film upon application of electric field during the BEN-facilitated MPECVD process. The nature of the diamond film and nuclei formed is characterized by SEM (scanning electron microscopy), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The HRTEM images and associated diffraction patterns of the nucleation layer show that the diamond nuclei are formed within the carbon film close to the Si (100) substrate surface under the influence of microwaves and electric fields that lead to formation of the textured diamond film and crystal upon further growth. These results are expected to develop diamond films of optimum quality containing a nitrogen-vacancy center for application in quantum systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.