Biosynthesis of metallic nanoparticles has acquired particular attention due to its economic feasibility, low toxicity, and simplicity of the process. In this study, extracellular synthesis of silver and zinc nanoparticle was carried out by Pseudomonas hibiscicola isolated from the effluent of an electroplating industry in Mumbai. Characterization studies revealed synthesis of 40 and 60 nm nanoparticles of silver (AgNP) and zinc (ZnNP), respectively, with distinct morphology as observed in TEM and its crystalline nature confirmed by XRD. DLS, zeta potential, NTA, and FTIR studies further characterized nanoparticles giving data about its size, stability, and functional groups. Considering the toxicity of nanoparticles the evaluation of antimicrobial activity was studied in the range of non-toxic concentration for normal cell lines. Silver nanoparticles were found to be the most effective antimicrobial against all tested strains and drug-resistant clinical isolates of MRSA, VRE, ESBL, MDR, Pseudomonas aeruginosa with MIC in the range of 1.25–5 mg/ml. Zinc nanoparticles were found to be specifically active against Gram-positive bacteria like Staphylococcus aureus including its drug-resistant variant MRSA. Both AgNP and ZnNP were found to be effective against Mycobacterium tuberculosis and its MDR strain with MIC of 1.25 mg/ml. The synergistic action of nanoparticles assessed in combination with a common antibiotic gentamicin (590 μg/mg) used for the treatment of various bacterial infections by Checker board assay. Silver nanoparticles profoundly exhibited synergistic antimicrobial activity against drug-resistant strains of MRSA, ESBL, VRE, and MDR P. aeruginosa while ZnNP were found to give synergism with gentamicin only against MRSA. The MRSA, ESBL, and P. aeruginosa strains exhibited MIC of 2.5 mg/ml except VRE which was 10 mg/ml for both AgNPs and ZnNPs. These results prove the great antimicrobial potential of AgNP and ZnNP against drug-resistant strains of community and hospital-acquired infections and opens a new arena of antimicrobials for treatment, supplementary prophylaxis, and prevention therapy.
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that was first identified in December 2019, in Wuhan, China was found to be the etiological agent for a novel respiratory infection that led to a Coronavirus Induced Disease named COVID-19. The disease spread to pandemic magnitudes within a few weeks and since then we have been dealing with several waves across the world, due to the emergence of variants and novel mutations in this RNA virus. A direct outcome of these variants apart from the spike of cases is the diverse disease presentation and difficulty in employing effective diagnostic tools apart from confusing disease outcomes. Transmissibility rates of the variants, host response, and virus evolution are some of the features found to impact COVID-19 disease management. In this review, we will discuss the emerging variants of SARS-CoV-2, notable mutations in the viral genome, the possible impact of these mutations on detection, disease presentation, and management as well as the recent findings in the mechanisms that underlie virus-host interaction. Our aim is to invigorate a scientific debate on how pathogenic potential of the new pandemic viral strains contributes toward development in the field of virology in general and COVID-19 disease in particular.
A large number of wild fruits belonging to the north eastern region of India are considered to be nutritionally abundant and traditionally used for the treatment of various ailments. In the present study, juices of gooseberry and wild apple have been evaluated for their antimicrobial activity in its consumable form as a potential source of natural anti-infective agent. The fruit juices were screened for their antibacterial and antifungal activities qualitatively, using the agar well diffusion method followed by quantitative assessment by determining the minimum inhibitory concentration and minimum bactericidal concentration. The study revealed that both the fruit juices exhibited broad spectrum antibacterial activity. Considerable activity against drug-resistant pathogens such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and extended spectrum β-lactamases producing Gram-negative bacteria was observed. Thus, this study highlights the antibacterial efficacy of wild apple and gooseberry fruit juices and augments the beneficiary properties of highly nutritional fruit juices that are specific to Indian region.
Introduction. As the world was still recovering from the 2020 pandemic, the devastating impact of Covid-19 driven by the Delta variant shook the world in 2021. As the second wave was declining, there was an unusual surge in Covid-19 positive cases by the end of 2021 which led to global concern about the change in virus characteristics. Hypothesis/gap statement. Whole genome sequencing is critical for understanding a rapidly progressing pandemic. Aim. To provide an insight into the major differences encountered in the changing characteristics between the second and third waves of the pandemic at a tertiary care hospital in India. Methods. A retrospective observational cohort analysis was conducted on Covid-positive patients during the second wave of the Covid-19 pandemic (from March 2021 to April 2021) and the third wave of the Covid-19 pandemic (from December 2021 to January 2022). Results. Out of 303 Covid-19 positive cases, 52 samples were tested by whole genome sequencing during the second wave and 108 during the third wave. A decline of 18.5 % was observed in the case fatality rate from the second wave to the third wave. There was a 5 % decline in the number of patients admitted with ARDS and a 16.3 % decline in the number of patients with co-morbidities. In total, 51.9 percent of cases were due to the Delta variant during the second wave and 95 percent due to the Omicron variant during the third wave. We found that 36.5 % of Covid-positive patients during the second wave had been vaccinated compared to 40 % in the third wave. Conclusion. Whole genome sequencing of clinical samples from a wide range of individuals during a viral epidemic will enable us to develop a more rapid public health response to new variants and identify the required vaccine modifications more quickly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.