In reinforcement learning episodes, the rewards and punishments are often non-deterministic, and there are invariably stochastic elements governing the underlying situation. Such stochastic elements are often numerous and cannot be known in advance, and they have a tendency to obscure the underlying rewards and punishments patterns. Indeed, if stochastic elements were absent, the same outcome would occur every time and the learning problems involved could be greatly simplified. In addition, in most practical situations, the cost of an observation to receive either a reward or punishment can be significant, and one would wish to arrive at the correct learning conclusion by incurring minimum cost. In this paper, we present a stochastic approach to reinforcement learning which explicitly models the variability present in the learning environment and the cost of observation. Criteria and rules for learning success are quantitatively analyzed, and probabilities of exceeding the observation cost bounds are also obtained.
Organizations need to constantly learn, develop, and evaluate new strategies and policies for their effective operation. Unsupervised reinforcement learning is becoming a highly useful tool, since rewards and punishments in different forms are pervasive and present in a wide variety of decision-making scenarios. By observing the outcome of a sufficient number of repeated trials, one would gradually learn the value and usefulness of a particular policy or strategy. However, in a given environment, the outcomes resulting from different trials are subject to external chance influence and variations. In learning about the usefulness of a given policy, significant costs are involved in systematically undertaking the sequential trials; therefore, in most learning episodes, one would wish to keep the cost within bounds by adopting learning efficient stopping rules. In this Chapter, we explain the deployment of different learning strategies in given environments for reinforcement learning policy evaluation and review, and we present suggestions for their practical use and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.