We report an acid-stable Si oxide-doped Ir oxide film (IrSi oxide film), made by metal organic chemical vapour deposition (MOCVD) of an Ir(V) complex for electrochemical water-oxidation. This is a successful improvement of catalytic ability and stability depending upon the pH of Ir oxide by doping of Si oxide. The turnover frequency (TOF) of the electrochemical water-oxidation by the IrSi oxide film is the highest of any Si oxide-doped Ir oxide materials and higher even than that of Ir oxide in acidic media.
We used two chloroplast gene regions (matK and rbcL) as a tool for the identification of 33 local conifer species. All 136 sequences, 101 newly generated (14 species for gene matK; 16 species for gene rbcL) and 35 retrieved from the GenBank, were used in the analysis. The highest genetic distance (matK region) was recorded between the species in Cupressaceae with an average of 5% (0.1–8.5), Podocarpaceae with an average of 6% (0–8.5), Taxaceae with an average of 5% (0.2–0.5) and Pinaceae with an average of 20.4% (0.8–54.1). The rbcL region showed a low genetic distance between the species in Cupressaceae 2% (0–3.3), Podocarpaceae 3% (0.6–3.4), Taxaceae 1% (0–2.1) and Pinaceae 1.2% (0–5.82). The phylogenetic analyses using the Maximum likelihood (ML) and Bayesian inference (BI) bootstrap values obtained at the branching nodes of each species ranged from 62 to 100% (Maximum likelihood bootstrap – MLBS and Bayesian posterior probabilities – BPP) for the matK gene; from 66 to 100% (MLBS) and 60 to 100% (BPP) for the rbcL region. The rbcL region was not identified between the species of Taxaceae and Cephalotaxaceae. The matK gene region was very clear in the different species among the families (Cupressaceae, Podocarpaceae, and Cephalotaxaceae) and unsuitable for identifying closely related species in Amentotaxus (Taxaceae) and Pinus (Pinaceae). The gene (matK) is a useful tool as a barcode in the identification of conifer species of Cupressaceae, Podocarpaceae, and Cephalotaxaceae in Vietnam.
We report the first example of a wholly inorganic mimic of a part of the FeMoco active centre of nitrogenases. We detail the synthesis, characterisation and reactivity of two related, transient hydride-containing inorganic clusters, a dihydride complex and a vinyl monohydride complex, which bear the [Fe2MoOS3] portion of FeMoco. The dihydride complex is capable of reducing acetylene to ethylene via the vinyl monohydride complex. In the reaction cycle, a transient low-valent complex was generated by the reductive elimination of H2 or ethylene from dihydride or vinyl monohydride complexes, respectively.
Cinnamomum balansae Lecomte (Lauraceae), an economically important forest tree, is distributed in the tropical forests of central and northern Vietnam, which has been threatened in recent decades due to the destruction of its habitat and over-exploitation. The genetic diversity and population structure of the species have not been fully evaluated. We used a set of 15 microsatellites to analyze 161 adult trees from 9 different populations, representing the geographical distribution of C. balansae. Ninety-two different alleles were identified. Here our results showed a low genetic diversity level with an average H
o = 0.246 and H
e = 0.262, and a high level of genetic differentiation (F
ST = 0.601). The bottleneck tests indicated evidence of a reduction in the population size of the two populations (TC and CP). Additionally, all three clustering methods (Bayesian analysis, principal coordinate analysis, and Neighbor-joining tree) were identified in the two genetic groups. The Mantel test showed a significant positive correlation between genetic distance and geographic distance (R
2 = 0.7331). This study will provide a platform for the conservation of C. balansae both in ex-situ and in-situ plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.