Metallothioneins (MTs) are ubiquitous cysteine-rich proteins present in plants, animals, fungi and cyanobacteria. In plants, MTs are suggested to be involved in metal tolerance or homeostasis, as they are able to bind metal ions through the thiol groups of their cysteine residues. Recent reports show that MTs are also involved in the scavenging of reactive oxygen species (ROS). The interplay between these roles is not entirely clear. Plants have many MT isoforms with overlapping expression patterns, and no specific role for any of them has been assigned. This review is focused on recent findings on plant MTs.
Silene vulgaris (Moench) Garcke has evolved populations with extremely high levels of copper tolerance. To evaluate the role of metallothioneins (MTs) in copper tolerance in S. vulgaris, we screened a cDNA library derived from a highly copper-tolerant population using Arabidopsis-based MT probes and identified an MT2b-like gene. When expressed in yeast, this gene, SvMT2b, restored cadmium and copper tolerance in different hypersensitive strains. Northern-blot analysis and quantitative reverse transcriptase-PCR showed that plants from the copper-tolerant S. vulgaris populations had significantly higher transcript levels of SvMT2b than plants from the copper-sensitive populations, both in roots and shoots and with and without copper exposure. Southern-blot analysis suggested that the higher expression of the latter allele was caused by gene amplification. Segregating families of crosses between copper-sensitive and copper-tolerant plants exhibited a 1 to 3 segregation for SvMT2b expression. Allele-specific PCR showed that low-expression F(3) plants were homozygous for the allele inherited from the copper-sensitive parent, whereas high-expression plants possessed at least one allele from the tolerant parent. SvMT2b expression did not cosegregate with copper tolerance in crosses between sensitive and tolerant plants. However, a significant cosegregation with copper tolerance did occur in families derived from crosses between moderately tolerant F(3) plants with different SvMT2b genotypes. Thus, overexpression of SvMT2b conferred copper tolerance although only within the genetic background of a copper tolerant plant.
Thlaspi caerulescens is increasingly acknowledged as one of the best models for studying metal hyperaccumulation in plants. In order to study the mechanisms underlying metal hyperaccumulation, we used proteomic profiling to identify differences in protein intensities among three T. caerulescens accessions with pronounced differences in tolerance, uptake and root to shoot translocation of Zn and Cd. Proteins were separated using two-dimensional electrophoresis and stained with SYPRO Orange. Intensity values and quality scores were obtained for each spot by using PDQuest software. Principal component analysis was used to test the separation of the protein profiles of the three plant accessions at various metal exposures, and to detect groups of proteins responsible for the differences. Spot sets representing individual proteins were analysed with the analysis of variance and non-parametric Kruskal-Wallis test. Clearest differences were seen among the Thlaspi accessions, while the effects of metal exposures were less pronounced. The 48 tentatively identified spots represent core metabolic functions (e.g. photosynthesis, nitrogen assimilation, carbohydrate metabolism) as well as putative signalling and regulatory functions. The possible roles of some of the proteins in heavy metal accumulation and tolerance are discussed.
To study the role of metallothioneins (MTs) in Zn accumulation, the expression of TcMT2a, TcMT2b, and TcMT3 was analysed in three accessions and 15 F3 families of two inter-accession crosses of the Cd/Zn hyperaccumulator Thlaspi caerulescens, with different degrees of Zn accumulation. The highest expression levels were found in the shoots of a superior metal-accumulating calamine accession from St Laurent le Minier, with >10-fold TcMT3 expression compared with another calamine accession and a non-metallicolous accession. Moreover, F3 sibling lines from the inter-accession crosses that harboured the MT2a or MT3 allele from St Laurent le Minier had higher expression levels. However, there was no co-segregation of TcMT2a or TcMT3 expression and Zn accumulation. To examine the functions of TcMTs in plants, TcMT2a and TcMT3 were ectopically expressed in Arabidopsis. The transformant lines had reduced root length in control medium but not at high metal concentrations, suggesting that the ectopically expressed proteins interfered with the physiological availability of essential metals under limited supply. The Arabidopsis transformant lines did not show increased tolerance to Cd, Cu, or Zn, nor increased Cd or Zn accumulation. Immunohistochemical analysis indicated that in roots, MT2 protein is localized in the epidermis and root hairs of both T. caerulescens and Arabidopsis thaliana. The results suggest that TcMT2a, TcMT2b, and TcMT3 are not primarily involved in Zn accumulation as such. However, the elevated expression levels in the metallicolous accessions suggests that they do contribute to the metal-adapted phenotype, possibly through improving Cu homeostasis at high Zn and Cd body burdens. Alternatively, they might function as hypostatic enhancers of Zn or Cd tolerance.
Summary• Expression of all known and newly found pathogenesis-related PR-10 proteins b, c, d, e) was analysed from Cu-sensitive and -tolerant birch clones to find out whether they follow the same expression pattern. The relationship of PR-10 proteins, particularly PR-10c, to oxidative stress caused by metals or ozone was studied in tolerant and sensitive birch clones to find out possible linkages to tolerance.• Antibody developed to PR-10c was used in Western blot analysis. Other PR-10 proteins were studied with two-dimensional electrophoresis and mass spectrometry. Metal-sensitive yeasts were transformed with PR-10c.• Two new members of PR-10 family, PR-10d and PR-10e, were found. Various PR-10 proteins showed different expression patterns. The amount of PR-10c increased with increasing soil metal concentrations but was, in general, more prominent in Cu-sensitive than in Cu-tolerant clones. PR-10c did not alter metal tolerance in metalsensitive yeasts.• The PR-10c protein appears not to confer metal-or ozone-tolerance in birch. However, this does not exclude the possibility that it is involved in the tolerance or sensitivity mechanism in an indirect manner.Key words: oxidative stress, birch, copper, zinc, ozone, PR-10, two-dimensional electrophoresis, mass spectrometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.