Forest ecosystems maintain a large share of Northern Hemisphere biodiversity. Boreal forests comprise roughly 30% of global forest area 1 and contain the highest tree density among climate zones 2 . Moreover, boreal regions are undergoing extensive climate change. Annual temperature increases exceeding 1.5 °C are projected to result in a warming of 4-11 °C by the end of this century, with little concomitant increase in precipitation 1 . At this pace, climate zones will shift northward at a greater speed than trees can migrate 3 . To understand how future populations of forest trees may respond to climate change, it is essential to uncover past and present signatures of molecular adaptation in their genomes. Silver birch, B. pendula, is a pioneer species in boreal forests of Eurasia. Flowering of the species can be artificially accelerated 4 , giving it an advantage over other tree species with published genome sequences (such as poplar 5 , spruce 6 , and pine 7 ) for the optimization of fiber and biomass production.Here we sequenced 150 birch individuals and assembled a B. pendula reference genome from a fourth-generation inbred line, resulting in a high-quality assembly of 435 Mb that was linked to chromosomes using a dense genetic map. We analyzed SNPs in the genomes of 80 birch individuals spanning most of the geographic range of B. pendula, as well as seven other members of Betulaceae. Population genomic analyses of these data provide insights into the deep-time evolution of the birch family and on recent natural selection acting on silver birch.Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightlylinked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.A full list of affiliations appears at the end of the paper.
Metallothioneins (MTs) are ubiquitous cysteine-rich proteins present in plants, animals, fungi and cyanobacteria. In plants, MTs are suggested to be involved in metal tolerance or homeostasis, as they are able to bind metal ions through the thiol groups of their cysteine residues. Recent reports show that MTs are also involved in the scavenging of reactive oxygen species (ROS). The interplay between these roles is not entirely clear. Plants have many MT isoforms with overlapping expression patterns, and no specific role for any of them has been assigned. This review is focused on recent findings on plant MTs.
Silene vulgaris (Moench) Garcke has evolved populations with extremely high levels of copper tolerance. To evaluate the role of metallothioneins (MTs) in copper tolerance in S. vulgaris, we screened a cDNA library derived from a highly copper-tolerant population using Arabidopsis-based MT probes and identified an MT2b-like gene. When expressed in yeast, this gene, SvMT2b, restored cadmium and copper tolerance in different hypersensitive strains. Northern-blot analysis and quantitative reverse transcriptase-PCR showed that plants from the copper-tolerant S. vulgaris populations had significantly higher transcript levels of SvMT2b than plants from the copper-sensitive populations, both in roots and shoots and with and without copper exposure. Southern-blot analysis suggested that the higher expression of the latter allele was caused by gene amplification. Segregating families of crosses between copper-sensitive and copper-tolerant plants exhibited a 1 to 3 segregation for SvMT2b expression. Allele-specific PCR showed that low-expression F(3) plants were homozygous for the allele inherited from the copper-sensitive parent, whereas high-expression plants possessed at least one allele from the tolerant parent. SvMT2b expression did not cosegregate with copper tolerance in crosses between sensitive and tolerant plants. However, a significant cosegregation with copper tolerance did occur in families derived from crosses between moderately tolerant F(3) plants with different SvMT2b genotypes. Thus, overexpression of SvMT2b conferred copper tolerance although only within the genetic background of a copper tolerant plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.