The present study investigates the potential of SARS-CoV-2 inactivation by a copper sulfide (CuS) incorporated three-layer mask design. The mask consisted of the outer, middle, and inner layers to give comfort, strength, shape, and safety. The outer layer contained a total of 4.4 % CuS (w/w) (2.2% CuS coated & 2.2 % CuS impregnated) nylon fibers and the middle entrapment area contain a total of 17.6% CuS (w/w) impregnated nylon. No CuS was present in the inner layer. The antiviral efficacy assessment revealed, CuS incorporated mask is highly effective in inactivating SARS-CoV-2 within 30 min exposure. After, 1h and 2 h exposure, near-complete elimination of virus were observed by cytopathy, fluorescence, and viral copy number. The antiviral activity of the mask material was derived by incorporated solid-state CuS. Noticeably, the antiviral activity of CuS against SARS-CoV-2 was in the form of solid-state CuS, but not as Cu 2+ ionic form derived by dissolved CuSO 4 . The kinetics of droplet entrapment revealed, that the three-layered mask almost completely block virus-containing droplet pass-through for short exposure periods of 1 to 2 min, and 80% efficacy for longer exposure times of 5 to 10 min. We also demonstrated the incorporated CuS is evenly distributed all over the fibers assuring the uniformity of potential antiviral activity and proves, CuS particles are not easily shed out of the fabric fibers. The inactivation efficacy demonstrated against SARS-CoV-2 proves that the CuS incorporated three-layer mask will be a lifesaver during the present intense global pandemic.
Introduction The emergence of SARS-CoV-2 variants has raised concerns on future vaccine efficacy as most vaccines target only the spike protein. Hence, vaccines targeting multiple SARS-CoV-2 proteins will offer broader protection and improve our preparedness to combat the pandemic. Objectives The study aimed to develop a novel vaccine strategy by combining a eukaryotic vector expressing multiple SARS-CoV-2 genes and Salmonella -mediated in vivo DNA delivery. Methods The eukaryotic vector was designed to function as a DNA-launched RNA replicon in a self-replicating and self-amplifying mRNA mechanism. By exploiting the self-cleaving peptide, P2A, we fused four SARS-CoV-2 targets, including receptor-binding domain (RBD), heptad repeat domain (HR), membrane protein (M) and epitopes of nsp13, in a single open reading frame. Western blot and immunofluorescence assays were used to determine protein expression. In mice, the vaccine's safety and immunogenicity were investigated. Results Western blot analysis revealed co-expression all four proteins from the vaccine construct, confirming the efficiency of Salmonella -mediated gene delivery and protein expression. The vaccine candidate was safe and elicited robust antigen-specific antibody titers in mice, and a recall response from splenocytes revealed induction of strong cell-mediated immunity. Flow cytometry demonstrated an increase in sub-populations of CD4 + and CD8 + T cells with the highest CD4 + and CD8 + T cells recorded for HR and RBD, respectively. Overall, humoral and cellular immune response data suggested the induction of both Th1 and Th2 immunity with polarization towards an antiviral Th1 response. SARS-CoV-2 neutralization assays exhibited potent neutralizing antibody titers in mouse immune sera. Conclusions The Salmonella bactofection ensured optimum in vivo gene delivery, and through a P2A-enabled efficient multicistronic expression, the vaccine candidate elicited potent anti-SARS-CoV-2 immune responses. These findings provide important insight into development of an effective multivalent vaccine to combat SARS-CoV-2 and its variants.
The ongoing SARS-CoV-2 evolution has resulted in many variants, contributing to the striking drop in vaccine efficacy and necessitated the development of next-generation vaccines to tackle antigenic diversity. Herein we developed a multivalent Semliki Forest virus replicon-based mRNA vaccine targeting the receptor binding domain (RBD), heptad repeat domain (HR), membrane protein (M) and epitopes of nsp13 of SARS-CoV-2. The bacteria-mediated gene delivery offers the rapid production of large quantities of vaccine at a highly economical scale and notably allows the needle-free mass vaccination. A favourable Th1 dominated potent antibody and cellular immune responses were detected in the immunized mice. Further, immunization induced strong cross-protective neutralizing antibodies (NAbs) against the B.1.617.2 delta variant (Clade G). We recorded a difference in induction of IgA response by the immunization route with the oral route eliciting a strong mucosal sIgA response, which possibly has contributed to the enhanced protection conferred by the oral immunization. Hamsters immunized orally were completely protected against the viral replication in the lungs and the nasal cavity. Importantly, the vaccine protected the hamsters against SARS-CoV-2-induced pneumonia. The study provides proof-of-principle findings for the development of a feasible and efficacious oral mRNA vaccine against SARS-CoV-2 and its variants.
In the present study, we characterized the involvement of Lon protease in bacterial virulence and intracellular survival in Salmonella under abiotic stress conditions resembling the conditions of a natural infection. Wild type (JOL401) and the lon mutant (JOL909) Salmonella Typhimurium were exposed to low temperature, pH, osmotic, and oxidative stress conditions and changes in gene expression profiles related to virulence and metal ion uptake were investigated. Expression of candidate genes invF and hilC of Salmonella Pathogenicity Island (SPI)-1 and sifA and sseJ of SPI-2 revealed that Lon protease controls SPI-1 genes and not SPI-2 genes under all stress conditions tested. The lon mutant exhibited increased accumulation of hydroxyl (OH•) ions that lead to cell damage due to oxidative stress. This oxidative damage can also be linked to an unregulated influx of iron due to the upregulation of ion channel genes such as fepA in the lon mutant. The deletion of lon from the Salmonella genome causes oxidative damage and increased expression of virulence genes. It also prompts the secretion of host pro-inflammatory cytokines leading to early clearance of the bacteria from host cells. We conclude that poor bacterial recovery from mice infected with the lon mutant is a result of disrupted bacterial intracellular equilibrium and rapid activation of cytokine expression leading to bacterial lysis.
The mRNA vaccines from Pfizer/BioNTech and Moderna were granted emergency approval in record time in the history of vaccinology and played an instrumental role in limiting the pandemic caused by SARS-CoV-2. The success of these vaccines resulted from over 3 decades of research from many scientists. However, the development of orally administrable mRNA vaccine development is surprisingly underexplored. Our group specializing in Salmonella-based vaccines explored the possibility of oral mRNA vaccine development. Oral delivery was made possible by the exploitation of the Semliki Forest viral replicon and Salmonella vehicle for transgene amplification and gene delivery, respectively. Herein we highlight the prospect of developing oral replicon-based mRNA vaccines against infectious diseases based on our recent primary studies on SARS-CoV-2. Further, we discuss the potential advantages and limitations of bacterial gene delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.