In our work, the process efficiency of the ECMM should be improved by using different combinations of nano-particles and added electrolytes. The superior aim of this work is to improve and predict the ECMM machining characteristics of die hardened steel, namely material removal rate (MRR), Tool wear rate (TWR) and Surface Roughness (Ra). The machining conditions are optimized using Response Surface Methodology (RSM) based on Box Behnken Design. The better Nano electrolyte is optimized using Deer Hunting Optimization (DHO) based on the machined outcomes, and the performances are predicted using a hybrid Deep Neural Network (DNN) based DHO. The hybrid DNN-DHO based predicted outcome of MRR is 0.361 mg/min, TWR is 0.272 mg/min and Ra is 2.511 μm. The validation results show that our proposed DNN-DHO model performed well and obtained above 0.99 regression for both training and validation of DNN-DHO, where the root mean square error ranges between 0.018 and 0.024.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.