Theoretical calculations are given of the large signal admittance of n+pp+ GaAs IMPATT diodes as a function of the magnitude of the ac signal. The analysis predicts the operating range of current and frequency of an IMPATT diode oscillating in a resonant cavity. The region of optimum power and stability of operation is obtained from this analysis.
This paper presents two methods, the block approach indefinite admittance matrix (BA-IAM) and the estimation-by-inspection, to analyse the effects of deterministic noise on single-stage, single-ended amplifiers by extending the indefinite admittance matrix. The proposed methods are used to develop a generalised two-port network analysis for the commonly used amplifier topologies, in the presence of the supply, ground, bulk, and input noise sources. Various illustrative case studies (common-source, common-gate, and push-pull amplifiers) are considered to validate the analytical method of different CMOS technology nodes (180 nm, 110 nm, and 28 nm) and foundries (Lfoundry, UMC, and TSMC). Both the proposed methods are compared with the relevant existing methods in terms of mean percentage error (MPE), and computational complexity. The mathematically derived expressions using two methods show less than 4% MPE when compared with the schematic simulation results, obtained by the SPICE based simulations. Also, the post-layout simulations (PLS) results for all the examples (designed in CMOS 180 nm Lfoundry technology) show excellent matching with schematic simulations. The proposed methods can be further applicable to antennas, complex circuits, digital circuits, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.