Current and future high-contrast imaging instruments require extreme Adaptive Optics (XAO) systems to reach contrasts necessary to directly image exoplanets. Telescope vibrations and the temporal error induced by the latency of the control loop limit the performance of these systems. Optimization of the (predictive) control algorithm is crucial in reducing these effects. We describe how model-free Reinforcement Learning can be used to optimize a Recurrent Neural Network controller for closed-loop adaptive optics control. We verify our proposed approach for tip-tilt control in simulations and a lab setup. The results show that this algorithm can effectively learn to suppress a combination of tip-tilt vibrations. Furthermore, we report decreased residuals for power-law input turbulence compared to an optimal gain integrator. Finally, we demonstrate that the controller can learn to identify the parameters of a varying vibration without requiring online updating of the control law. We conclude that Reinforcement Learning is a promising approach towards data-driven predictive control; future research will apply this approach to the control of high-order deformable mirrors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.