Voltage-sensitive fluorophores enable the direct visualization of membrane potential changes in living systems. To pair the speed and sensitivity of chemical synthesized fluorescent indicators with cell-type specific genetic methods, we here develop Rhodamine-based Voltage Reporters (RhoVR) that can be covalently tethered to genetically-encoded, self-labeling enzymes. These chemical-genetic hybrids feature a photoinduced electron transfer (PeT) triggered RhoVR voltage-sensitive indicator coupled to a chloroalkane HaloTag ligand through a long, water-soluble polyethyleneglycol (PEG) linker (RhoVR-Halos). When applied to cells, RhoVR-Halos selectively and covalently bind to surface-expressed HaloTag enzyme on genetically modified cells. RhoVR-Halos maintain high voltage sensitivities—up to 34% ΔF/F per 100 mV—and fast response times typical of untargeted RhoVRs, while gaining the selectivity typical of genetically encodable voltage indicators. We show that RhoVR-Halos can record action potentials in single trials from cultured rat hippocampal neurons and can be used in concert with green-fluorescent Ca<sup>2+</sup> indicators like GCaMP to provide simultaneous voltage and Ca<sup>2+</sup> imaging. In brain slice, RhoVR-Halos provide exquisite labeling of defined cells and can be imaged using epifluorescence, confocal, or two-photon microscopy. Using high-speed epifluorescence microscopy, RhoVR-Halos provide a read out of action potentials from labeled cortical neurons in rat brain slice, without the need for trial averaging. These results demonstrate the potential of hybrid chemical-genetic voltage indicators to combine the optical performance of small-molecule chromophores with the inherent selectivity of genetically-encodable systems, permitting imaging modalities inaccessible to either technique individually.
Es werden z neue SchnellaufschluBverfahren (250 mg bzw. 500 mg Probenmaterial; Wasserstoffperoxid, Selen und Schwefelsaure als AufschluDmittel) beschrieben, die wesentlich schneller, aber mit gleichen Ergebnissen durchfiihrbar sind wie der in der TGL enthaltene konventionelle KJELDAHL-AUfSChlUD.Die Ermittlung des Rohproteingehaltes in Nahrungs-und Futtermitteln erfolgt auch in der DDR iiberwiegend nach dem K JELDAHL-Verfahren. Eine umfangreiche Analyse in den Futtermittellaboratorien der Bezirke und den TKO-Laboratorien der Kraftfuttermischwerke hat gezeigt, daB sich diese Bestimmung auch unter Praxisbedingungen richtig und reproduzierbar durchfiihren la&. Voraussetzung dafiir ist, daB nach den verbindlichen Standards TGL 21875105 und 23 gearbeitet wird. Unzureichend hinsichtlich der zu stellenden Anforderungen ist jedoch die Produktivitat und Schnelligkeit sowohl der Makro-wie auch der Halbmikroverfahren, die zudem erhebliche Investitionen erfordern. Die Analyse hat weiter gezeigt, daB eine Rationalisierung dieser Bestimmung bei einer Verbesserung des K JELDAHL-Aufschlusses anfangen sollte. Dieser ist bisher zu aufwendig ; er erfordert bei hoherem Probenanfall erheblichen Raum und Platzbedarf und dauert mit durchschnittlich iiber go min zu lange. MethodeUnsere methodischen Untersuchungen zur Verbesserung des AufschluDverfahrens haben zu folgenden 2 Arbeitsvorschriften gefuhrt.
Es werden 3 komplexometrische Verfahren zur rationellen Bestimmung des Calciumgehaltcs in Futtermitteln beschrieben und ihre Eignung nachgewiesen. Diese Verfahren unterscheiden sich im wesentlichen dnrch die Art der Probenaufbereitung. Nach der beschriebenen Schnellmethode (Verfahren 11) kann der Calciumgehalt in Futtermitteln innerhalb von 15 min richtig und reproduzierbar ermittelt werden. Diese Schnellmethodc wird bcreits in einigen Futtermittellaboratorien der DDR erfolgreich angewendet.
<p>We present the design, synthesis, and applications of a new class of voltage-sensitive fluorescent indicators built on a modified carbofluorescein scaffold. Carbofluoresceins are an attractive target for responsive probes because they maintain oxygen substitution patterns at the 3' and 6' positions, similar to fluorescein, while simultaneously possessing excitation and emission profiles red-shifted nearly 50 nm compared to fluorescein. However, the high p<i>K</i><sub>a</sub> of carbofluorescein dyes, coupled with their tendency to cyclize to non-fluorescent configurations precludes their use in voltage-imaging applications. Here, we overcome the limitations of carbofluoresceins via chlorination to lower the p<i>K</i>a by 2 units to 5.2 and sulfonation to prevent cyclization to the non-absorbing form. To achieve this, we devise a synthetic route to halogenated sulfonated carbofluoresceins from readily available, inexpensive starting materials. New, chlorinated sulfone carbofluoresceins have low p<i>K</i><sub>a</sub> values (5.2) and can be incorporated into phenylenevinylene molecular wire scaffolds to create carboVoltage-sensitive Fluorophores (carboVF dyes). The best of the new carboVF dyes, carboVF2.1(OMe).Cl, possesses excitation and emission profiles >560 nm, displays high voltage sensitivity (>30% ΔF/F per 100 mV), and can be used in the presence of other blue-excited fluorophores like green fluorescent protein (GFP). Because carboVF2.1(OMe).Cl contains a phenolic oxygen, it can be incorporated into fluorogenic labeling strategies. Alkylation with a sterically bulky cyclopropylmethyl-derived acetoxymethyl ether renders carboVF weakly fluorescent; we show that fluorescence can be restored by the action of porcine liver esterase (PLE) both <i>in vitro</i> and on the surface of living cells and neurons. Together, these results suggest chlorinated sulfone carbofluoresceins can be promising candidates for hybrid chemical-genetic voltage imaging at wavelengths beyond typical fluorescein excitation and emission.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.