Electron beam melting (EBM) is an additive manufacturing technique, which allows forming customized implants that perfectly fit the loss of the anatomical structure of bone. Implantation efficiency depends not only on the implant’s functional or mechanical properties but also on its surface properties, which are of great importance with regard to such biological processes as bone regeneration or microbial contamination. This work presents the impact of surface modifications (mechanical polishing, sandblasting, and acid-polishing) of EBM-produced Ti6Al4V ELI implants on essential biological parameters. These include wettability, cytotoxicity toward fibroblast and osteoblast cell line, and ability to form biofilm by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Obtained results indicated that all prepared surfaces exhibited hydrophilic character and the highest changes of wettability were obtained by chemical modification. All implants displayed no cytotoxicity against osteoblast and fibroblast cell lines regardless of the modification type. In turn, the quantitative microbiological tests and visualization of microbial biofilm by means of electron microscopy showed that type of implant’s modification correlated with the species-specific ability of microbes to form biofilm on it. Thus, the results of the presented study confirm the relationship between such technological aspects as surface modification and biological properties. The provided data are useful with regard to applications of the EBM technology and present a significant step towards personalized, customized implantology practice.
Seed coating containing fertilizer nutrients and plant growth biostimulants is an innovative technique for precision agriculture. Nutrient delivery can also be conducted through multilayer seed coating. For this purpose, sodium alginate with NPK, which was selected in a preliminary selection study, crosslinked with divalent ions (Cu(II), Mn(II), Zn(II)) as a source of fertilizer micronutrients, was used to produce seed coating. The seeds were additionally coated with a solution containing amino acids derived from high-protein material. Amino acids can be obtained by alkaline hydrolysis of mealworm larvae (Gly 71.2 ± 0.6 mM, Glu 55.8 ± 1.3 mM, Pro 48.8 ± 1.5 mM, Ser 31.4 ± 1.5 mM). The formulations were applied in different doses per 100 g of seeds: 35 mL, 70 mL, 105 mL, and 140 mL. SEM-EDX surface analysis showed that 70 mL of formulation/100 g of seeds formed a continuity of coatings but did not result in a uniform distribution of components on the surface. Extraction tests proved simultaneous low leaching of nutrients into water (max. 10%), showing a slow release pattern. There occurred high bioavailability of fertilizer nutrients (even up to 100%). Pot tests on cucumbers (Cornichon de Paris) confirmed the new method’s effectiveness, yielding a 50% higher fresh sprout weight and four times greater root length than uncoated seeds. Seed coating with hydrogel has a high potential for commercial application, stimulating the early growth of plants and thus leading to higher crop yields.
The purpose of this work is to obtain comprehensive reference data of the Ti-13Nb-13Zr alloy base material: its microstructure, mechanical, and physicochemical properties. In order to obtain extensive information on the tested materials, a number of examination methods were used, including SEM, XRD, and XPS to determine the phases occurring in the material, while mechanical properties were verified with static tensile, compression, and bending tests. Moreover, the alloy’s corrosion resistance in Ringer’s solution and the cytotoxicity were investigated using the MTT test. Studies have shown that this alloy has the structure α’, α, and β phases, indicating that parts of the β phase transformed to α’, which was confirmed by mechanical properties and the shape of fractures. Due to the good mechanical properties (E = 84.1 GPa), high corrosion resistance, as well as the lack of cytotoxicity on MC3T3 and NHDF cells, this alloy meets the requirements for medical implant materials. Ti-13Nb-13Zr alloy can be successfully used in implants, including bone tissue engineering products and dental applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.