Spark ablation, a versatile, gas-phase physical nanoparticle synthesis method was employed to fabricate fiber-optic surface enhanced Raman scattering (SERS) sensors in a simple single-step process. We demonstrate that spark-generated silver nanoparticles can be simply deposited onto a fiber tip by means of a modified low-pressure inertial impactor, thus providing significant surface enhancement for fiber-based Raman measurements. The surface morphology of the produced sensors was characterized along with the estimation of the enhancement factor and the inter- and intra-experimental variation of the measured Raman spectrum as well as the investigation of the concentration dependence of the SERS signal. The electric field enhancement over the deposited silver nanostructure was simulated in order to facilitate the better understanding of the performance of the fabricated SERS sensors. A potential application in the continuous monitoring of a target molecule was demonstrated on a simple model system.
The primary aim of the insulin-dependent diabetes mellitus (IDDM) component of Genetic Analysis Workshop 5 (GAW5) was to collect and analyze new data on DNA polymorphisms closely linked to the HLA-D region and the insulin gene. The probes and restriction enzymes described here were used by all ten participating labs, and the data from Southern blotting were interpreted and reported according to conventions developed for the Workshop. These DNA data on members of 94 families with two or more IDDM sibs constitute the largest such sample available. The data were used in most of the analyses presented at the Workshop meeting, and are available on request.
A new, rapid method is described which permits the genotyping of genetically modified animals from a microlitre volume of whole blood samples via one step polymerase chain reaction amplification. The major advantage of the presented method is the exclusion of a DNA preparation step, which significantly reduces the time expenditure and work load of the genetic testing. Pilot studies indicate, that this method is efficient and applicable also on tissue biopsies and larger amount of blood providing a rapid and reliable new technique over conventional genotyping approaches.
This paper presents a systematic study of the investigation of nanoparticle (NP) agglomerate films fabricated via depositing spark-generated Au, Ag, and Au/Ag NPs onto quartz microscope coverslips in a low-pressure inertial impactor. The primary focus of the study is to characterize these nanostructures and to examine their potential application in surface-enhanced Raman spectroscopy (SERS). The characterization of the produced nanostructures was carried out by performing optical absorbance measurements, morphology, and composition analysis, as well as testing the SERS performance of the NP films at three different excitation laser wavelengths in the visible range. The study aims to investigate the relationship between the optical properties, the morphology, and the enhancement of the produced samples at different excitations, and the results are presented and discussed. The study highlights the potential of using spark ablation and inertial impaction-based deposition as a method for producing nanoparticle films for SERS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.