Since the introduction in 2014 of fabric phase sorptive extraction (FPSE) as a sample preparation technique, it has attracted the attention of many scientists working in the field of separation science. This novel sorbent extraction technique has successfully utilized the benefits of sol-gel derived hybrid sorbents and a plethora of fabric substrates, resulting in a highly efficient, sensitive and green sample pretreatment methodology. The proposed procedure is an easy and efficient pathway to extract target analytes from different matrices providing inherent advantages such as high sample loading capacity and short pretreatment time. The present review mainly focuses on the background and sol-gel chemistry for the preparation of new fabric sorbents as well as on the applications of FPSE for extracting target analytes, from the time that it was first introduced. New modes of FPSE including stir FPSE, stir-bar FPSE, dynamic FPSE, and automated on-line FPSE are also highlighted and commented upon in detail. FPSE has been effectively applied for the determination of various organic and inorganic analytes in different types of environmental and biological samples in high throughput analytical, environmental, and toxicological laboratories.
A novel time-based flow-injection–solid-phase extraction system (FI–SPE) coupled with flame atomic absorption spectrometry (FAAS) for automatic on-line preconcentration and determination of thallium was developed. The efficiency of poly-tetrafluoroethylene (PTFE) turnings packed into a column as sorbent material was investigated for thallium extraction. Total thallium was determined by oxidizing thallium(I) to thallium(III), adding bromine in acidic solution. The formed [TlBr4]− anionic bromo complex was retained onto the PTFE turnings by on-line mixing with sodium diethyl dithiocarbamate (DDTC). The preconcentrated Tl(III)-DDTC complex was then effectively eluted with methyl isobutyl ketone (MIBK) and introduced into the flame atomizer for measurement and quantification. The column proved to be effective, stable, and reproducible, with a long lifetime. The enrichment factor was 105 for 60 s preconcentration time, and the sampling frequency 40 h−1. The detection limit was 1.93 μg L−1, and the relative standard deviation (RSD) was 3.2% at 50.0 μg L−1 concentration. The accuracy of the proposed method was estimated by analyzing certified reference materials and environmental and biological samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.