PurposeThe objective of this in situ study was to quantify the intraoral biofilm reduction on bracket material as a result of different surface modifications using silver ions. In addition to galvanic silver coating and physical vapor deposition (PVD), the plasma immersion ion implantation and deposition (PIIID) procedure was investigated for the first time within an orthodontic application.Materials and methodsAn occlusal splint equipped with differently silver-modified test specimens based on stainless steel bracket material was prepared for a total of 12 periodontally healthy patients and was worn in the mouth for 48 h. The initially formed biofilm was fluorescently stained and a quantitative comparative analysis of biofilm volume, biofilm surface coverage and live/dead distribution of bacteria was performed by confocal laser scanning microscopy (CLSM).ResultsCompared to untreated stainless steel bracket material, the antibacterial effect of the PIIID silver-modified surface was just as significant with regard to reducing the biofilm volume and the surface coverage as the galvanically applied silver layer and the PVD silver coating. Regarding the live/dead distribution, however, the PIIID modification was the only surface that showed a significant increase in the proportion of dead cells compared to untreated bracket material and the galvanic coating.ConclusionsOrthodontic stainless steel with a silver-modified surface by PIIID procedure showed an effective reduction in the intraoral biofilm formation compared to untreated bracket material, in a similar manner to PVD and galvanic silver coatings applied to the surface. Additionally, the PIIID silver-modified surface has an increased bactericidal effect.
Purpose Bacteria-induced white spot lesions are a common side effect of modern orthodontic treatment. Therefore, there is a need for novel orthodontic bracket materials with antibacterial properties that also resist long-term abrasion. The aim of this study was to investigate the abrasion-stable antibacterial properties of a newly developed, thoroughly silver-infiltrated material for orthodontic bracket application in an in situ experiment. Methods To generate the novel material, silver was vacuum-infiltrated into a sintered porous tungsten matrix. A tooth brushing simulation machine was used to perform abrasion equal to 2 years of tooth brushing. The material was characterized by energy dispersive X‑ray (EDX) analysis and roughness measurement. To test for antibacterial properties in situ, individual occlusal splints equipped with specimens were worn intraorally by 12 periodontal healthy patients for 48 h. After fluorescence staining, the quantitative biofilm volume and live/dead distribution of the initial biofilm formation were analyzed by confocal laser scanning microscopy (CLSM). Results Silver was infiltrated homogeneously throughout the tungsten matrix. Toothbrush abrasion only slightly reduced the material’s thickness similar to conventional stainless steel bracket material and did not alter surface roughness. The new silver-modified material showed significantly reduced biofilm accumulation in situ. The effect was maintained even after abrasion. Conclusion A promising, novel silver-infiltrated abrasion-stable material for use as orthodontic brackets, which also exhibit strong antibacterial properties on in situ grown oral biofilms, was developed. The strong antibacterial properties were maintained even after surface abrasion simulated with long-term toothbrushing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.